Nuprl Lemma : mprime_divs_list_el

g:IAbMonoid. ∀p:|g|.  (IsPrime(p)  (∀as:|g| List. ((p (Π as))  (∃i:ℕ||as||. (p as[i])))))


Proof




Definitions occuring in Statement :  mprime: IsPrime(a) mdivides: a mon_reduce: mon_reduce select: L[n] length: ||as|| list: List int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: iabmonoid: IAbMonoid imon: IMonoid int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T so_apply: x[s] mon_reduce: mon_reduce mprime: IsPrime(a) munit: g-unit(u) infix_ap: y le: A ≤ B less_than': less_than'(a;b) nat_plus: + true: True uiff: uiff(P;Q) select: L[n] cons: [a b] subtract: m ge: i ≥  subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction mdivides_wf mon_reduce_wf exists_wf int_seg_wf length_wf grp_car_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma reduce_nil_lemma nil_wf reduce_cons_lemma cons_wf list_wf mprime_wf iabmonoid_wf length_of_cons_lemma istype-false add_nat_plus length_wf_nat less_than_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf le_wf add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma non_neg_length squash_wf true_wf grp_sig_wf select_cons_tl subtype_rel_self iff_weakening_equal add-associates add-swap add-commutes zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality_alt functionEquality dependent_functionElimination setElimination rename hypothesis hypothesisEquality natural_numberEquality independent_isectElimination productElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType imageElimination functionIsType productIsType inhabitedIsType dependent_set_memberEquality_alt imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion equalityIsType1 addEquality applyEquality instantiate universeEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}p:|g|.    (IsPrime(p)  {}\mRightarrow{}  (\mforall{}as:|g|  List.  ((p  |  (\mPi{}  as))  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}||as||.  (p  |  as[i])))))



Date html generated: 2019_10_16-PM-01_05_48
Last ObjectModification: 2018_10_08-PM-00_11_58

Theory : factor_1


Home Index