Nuprl Lemma : bsublist_weakening

s:DSet. ∀as,bs:|s| List.  ((as ≡(|s|) bs)  (↑bsublist(s;as;bs)))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) permr: as ≡(T) bs list: List assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet iff: ⇐⇒ Q and: P ∧ Q guard: {T} rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le iff_weakening_equal count_wf true_wf squash_wf le_wf count_bsublist permr_iff_eq_counts_a dset_wf list_wf set_car_wf permr_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis productElimination independent_functionElimination because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry intEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    ((as  \mequiv{}(|s|)  bs)  {}\mRightarrow{}  (\muparrow{}bsublist(s;as;bs)))



Date html generated: 2016_05_16-AM-07_41_40
Last ObjectModification: 2016_01_16-PM-11_11_50

Theory : list_2


Home Index