Nuprl Lemma : count_bsublist

s:DSet. ∀as,bs:|s| List.  (↑bsublist(s;as;bs) ⇐⇒ {∀c:|s|. ((c #∈ as) ≤ (c #∈ bs))})


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) count: #∈ as list: List assert: b guard: {T} le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q dset: DSet set_car: |p|
Definitions unfolded in proof :  guard: {T} bsublist: bsublist(s;as;bs) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] dset: DSet prop: rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a squash: T true: True subtype_rel: A ⊆B top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  set_car_wf assert_wf null_wf diff_wf le_wf count_wf list_wf dset_wf assert_of_null equal_wf squash_wf true_wf istype-universe count_diff subtype_rel_self iff_weakening_equal count_nil_lemma istype-void ndiff_zero nil_wf permr_nil_is_nil permr_iff_eq_counts
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination functionIsType because_Cache inhabitedIsType productElimination independent_isectElimination applyLambdaEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality natural_numberEquality imageMemberEquality baseClosed instantiate independent_functionElimination isect_memberEquality_alt voidElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}bsublist(s;as;bs)  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  (c  \#\mmember{}  bs))\})



Date html generated: 2019_10_16-PM-01_05_05
Last ObjectModification: 2018_10_08-AM-11_18_32

Theory : list_2


Home Index