Nuprl Lemma : count_bsublist
∀s:DSet. ∀as,bs:|s| List.  (↑bsublist(s;as;bs) ⇐⇒ {∀c:|s|. ((c #∈ as) ≤ (c #∈ bs))})
Proof
Definitions occuring in Statement : 
bsublist: bsublist(s;as;bs), 
count: a #∈ as, 
list: T List, 
assert: ↑b, 
guard: {T}, 
le: A ≤ B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
guard: {T}, 
bsublist: bsublist(s;as;bs), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
dset: DSet, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
set_car_wf, 
assert_wf, 
null_wf, 
diff_wf, 
le_wf, 
count_wf, 
list_wf, 
dset_wf, 
assert_of_null, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
count_diff, 
subtype_rel_self, 
iff_weakening_equal, 
count_nil_lemma, 
istype-void, 
ndiff_zero, 
nil_wf, 
permr_nil_is_nil, 
permr_iff_eq_counts
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
functionIsType, 
because_Cache, 
inhabitedIsType, 
productElimination, 
independent_isectElimination, 
applyLambdaEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}bsublist(s;as;bs)  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  (c  \#\mmember{}  bs))\})
Date html generated:
2019_10_16-PM-01_05_05
Last ObjectModification:
2018_10_08-AM-11_18_32
Theory : list_2
Home
Index