Nuprl Lemma : ndiff_zero

[a,b:ℤ].  uiff((a -- b) 0 ∈ ℤ;a ≤ b)


Proof




Definitions occuring in Statement :  ndiff: -- b uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  ndiff: -- b imax: imax(a;b) has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  value-type-has-value int-value-type subtract_wf less_than'_wf equal-wf-base le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermVar_wf intformnot_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf int_subtype_base decidable__le assert_wf bnot_wf not_wf intformeq_wf int_formula_prop_eq_lemma bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality independent_pairFormation isect_memberFormation productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination axiomEquality because_Cache baseApply closedConclusion baseClosed applyEquality natural_numberEquality lambdaFormation unionElimination equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination int_eqEquality isect_memberEquality voidEquality computeAll impliesFunctionality

Latex:
\mforall{}[a,b:\mBbbZ{}].    uiff((a  --  b)  =  0;a  \mleq{}  b)



Date html generated: 2017_04_14-AM-09_15_06
Last ObjectModification: 2017_02_27-PM-03_52_53

Theory : int_2


Home Index