Nuprl Lemma : whole_segment_example

T:Type. ∀as:T List.  ((as[0..||as||-]) as ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: int_iseg: {i...j} and: P ∧ Q cand: c∧ B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf list_wf segment_factor false_wf non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf length_wf subtype_rel_self iff_weakening_equal lapp_fact_b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality dependent_functionElimination because_Cache dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation unionElimination productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productEquality imageMemberEquality baseClosed instantiate

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)



Date html generated: 2018_05_22-AM-07_45_37
Last ObjectModification: 2018_05_19-AM-08_32_51

Theory : list_2


Home Index