Nuprl Lemma : whole_segment_example
∀T:Type. ∀as:T List.  ((as[0..||as||-]) = as ∈ (T List))
Proof
Definitions occuring in Statement : 
segment: as[m..n-]
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
int_iseg: {i...j}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
segment_factor, 
false_wf, 
non_neg_length, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
lapp_fact_b
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
unionElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
imageMemberEquality, 
baseClosed, 
instantiate
Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)
Date html generated:
2018_05_22-AM-07_45_37
Last ObjectModification:
2018_05_19-AM-08_32_51
Theory : list_2
Home
Index