Nuprl Lemma : swap_eval_2

i,j,k:ℤ.  ((k j ∈ ℤ ((swap(i;j) k) i ∈ ℤ))


Proof




Definitions occuring in Statement :  swap: swap(i;j) all: x:A. B[x] implies:  Q apply: a int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q swap: swap(i;j) member: t ∈ T uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop:
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int full-omega-unsat istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf intformand_wf intformeq_wf itermVar_wf intformnot_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation_alt equalityIsType2 baseApply closedConclusion baseClosed applyEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination approximateComputation lambdaEquality_alt int_eqEquality natural_numberEquality isect_memberEquality_alt independent_pairFormation universeIsType equalityIsType1 equalityIsType4

Latex:
\mforall{}i,j,k:\mBbbZ{}.    ((k  =  j)  {}\mRightarrow{}  ((swap(i;j)  k)  =  i))



Date html generated: 2019_10_16-PM-00_59_16
Last ObjectModification: 2018_10_08-AM-09_26_40

Theory : perms_1


Home Index