Nuprl Lemma : fabgrp_wf

s:DSet. (FAbGrp(s) ∈ 𝕌')


Proof




Definitions occuring in Statement :  fabgrp: FAbGrp(s) all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  fabgrp: FAbGrp(s) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] dset: DSet abgrp: AbGrp grp: Group{i} mon: Mon subtype_rel: A ⊆B prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  fabgrp_sig_wf all_wf abgrp_wf set_car_wf grp_car_wf uni_sat_wf fabgrp_grp_wf fabgrp_umap_wf monoid_hom_p_wf equal_wf compose_wf fabgrp_inj_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis instantiate isectElimination lambdaEquality functionEquality setElimination rename because_Cache applyEquality functionExtensionality productEquality cumulativity universeEquality

Latex:
\mforall{}s:DSet.  (FAbGrp(s)  \mmember{}  \mBbbU{}')



Date html generated: 2017_10_01-AM-10_01_20
Last ObjectModification: 2017_03_03-PM-01_03_40

Theory : polynom_1


Home Index