Nuprl Lemma : omral_action_plus_r

g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps,qs:|omral(g;r)|.  ((v ⋅⋅ (ps ++ qs)) ((v ⋅⋅ ps) ++ (v ⋅⋅ qs)) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omral_plus: ps ++ qs omralist: omral(g;r) all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng squash: T prop: infix_ap: y true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g|
Lemmas referenced :  omral_lookups_same_a omral_action_wf omral_plus_wf2 grp_car_wf set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf lookup_omral_action rng_times_wf lookup_omral_plus rng_plus_wf iff_weakening_equal rng_times_over_plus lookup_wf oset_of_ocmon_wf0 rng_zero_wf infix_ap_wf dset_of_mon_wf0 add_grp_of_rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_functionElimination isectElimination setElimination rename applyEquality lambdaEquality sqequalRule because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination functionEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps,qs:|omral(g;r)|.    ((v  \mcdot{}\mcdot{}  (ps  ++  qs))  =  ((v  \mcdot{}\mcdot{}  ps)  ++  (v  \mcdot{}\mcdot{}  qs)))



Date html generated: 2017_10_01-AM-10_07_06
Last ObjectModification: 2017_03_03-PM-01_14_56

Theory : polynom_3


Home Index