Nuprl Lemma : omral_dom_inj
∀g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|.
  (dom(inj(k,v)) = if v =b 0 then 0{g↓oset} else mset_inj{g↓oset}(k) fi  ∈ FiniteSet{g↓oset})
Proof
Definitions occuring in Statement : 
omral_inj: inj(k,v)
, 
omral_dom: dom(ps)
, 
mset_inj: mset_inj{s}(x)
, 
finite_set: FiniteSet{s}
, 
null_mset: 0{s}
, 
ifthenelse: if b then t else f fi 
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
cdrng: CDRng
, 
rng_zero: 0
, 
rng_eq: =b
, 
rng_car: |r|
, 
oset_of_ocmon: g↓oset
, 
ocmon: OCMon
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
ocmon: OCMon
, 
omon: OMon
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
abmonoid: AbMon
, 
mon: Mon
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
grp_eq: =b
, 
pi2: snd(t)
, 
grp_id: e
, 
omral_inj: inj(k,v)
, 
omral_dom: dom(ps)
Lemmas referenced : 
oal_dom_inj, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
cdrng_is_abdmonoid, 
cdrng_wf, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
independent_pairFormation
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.
    (dom(inj(k,v))  =  if  v  =\msubb{}  0  then  0\{g\mdownarrow{}oset\}  else  mset\_inj\{g\mdownarrow{}oset\}(k)  fi  )
Date html generated:
2017_10_01-AM-10_05_21
Last ObjectModification:
2017_03_03-PM-01_11_22
Theory : polynom_3
Home
Index