Nuprl Lemma : fpf-contains-union-join-left2

[A:Type]. ∀[B:A ─→ Type].
  ∀eq:EqDecider(A). ∀f,h,g:a:A fp-> B[a] List. ∀R:∩a:A. ((B[a] List) ─→ B[a] ─→ 𝔹).
    (h ⊆⊆  h ⊆⊆ fpf-union-join(eq;R;f;g))


Proof




Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-contains: f ⊆⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) list: List bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q isect: x:A. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top list_wf fpf-contains_wf bool_wf fpf_wf deq_wf fpf-union-join-dom assert_elim subtype_base_sq bool_subtype_base fpf-union-join-ap fpf-union-contains l_all_iff fpf-cap_wf nil_wf l_member_wf fpf-union_wf select_wf fpf-ap_wf sq_stable__le int_seg_wf length_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:\mcap{}a:A.  ((B[a]  List)  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).
        (h  \msubseteq{}\msubseteq{}  f  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g))



Date html generated: 2015_07_17-AM-11_07_45
Last ObjectModification: 2015_01_28-AM-07_47_11

Home Index