Nuprl Lemma : fpf-join-idempotent

[A:Type]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[eq:EqDecider(A)].  (f ⊕ f ∈ a:A fp-> B[a])


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  deq_wf fpf_wf filter_is_nil bnot_wf deq-member_wf l_all_iff l_member_wf not_wf assert_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert-deq-member append_nil_sq subtype_rel_list top_wf subtype_rel-deq member_wf equal_wf set_wf list-subtype bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].    (f  \moplus{}  f  =  f)



Date html generated: 2015_07_17-AM-09_19_13
Last ObjectModification: 2015_01_28-AM-07_50_08

Home Index