Nuprl Lemma : fpf-single_wf2

[A,B:Type]. ∀[x:A]. ∀[v:B]. ∀[eqa:EqDecider(A)].  (x v ∈ a:A fp-> B(a)?Top)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] top: Top member: t ∈ T universe: Type
Lemmas :  fpf-single_wf subtype-fpf-cap-top2 subtype_rel_self assert_wf fpf-dom_wf top_wf deq_wf fpf_ap_pair_lemma cons_wf nil_wf subtype_rel_product list_wf l_member_wf subtype_rel_dep_function subtype_top set_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
\mforall{}[A,B:Type].  \mforall{}[x:A].  \mforall{}[v:B].  \mforall{}[eqa:EqDecider(A)].    (x  :  v  \mmember{}  a:A  fp->  x  :  B(a)?Top)



Date html generated: 2015_07_17-AM-11_08_18
Last ObjectModification: 2015_01_28-AM-07_46_12

Home Index