{ [Info,T:Type]. [X:EClass(T)].  (X >xreturn-class(x) = X) }

{ Proof }



Definitions occuring in Statement :  return-class: return-class(x) bind-class: X >xY[x] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] universe: Type equal: s = t
Definitions :  record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b apply: f a eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] top: Top so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] bind-class: X >xY[x] return-class: return-class(x) axiom: Ax universe: Type equal: s = t uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  atom_eq: atomeqn def sq_type: SQType(T) sqequal: s ~ t rationals: append: as @ bs locl: locl(a) Knd: Knd atom: Atom$n es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: Error :collect-event,  decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) squash: T sq_stable: SqStable(P) limited-type: LimitedType record-update: r[x := v] eo-restrict: eo-restrict(eo;P) empty-bag: {} eo-forward: eo.e es-first: first(e) single-bag: {x} guard: {T} l_member: (x  l) infix_ap: x f y es-causl: (e < e') so_apply: x[s] bag-append: as + bs bool: bag-combine: xbs.f[x] permutation: permutation(T;L1;L2) nil: [] tag-by: zT rev_implies: P  Q or: P  Q iff: P  Q record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B union: left + right true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) prop: class-program: ClassProgram(T) es-E-interface: Error :es-E-interface,  fpf-cap: f(x)?z atom: Atom es-base-E: es-base-E(es) token: "$token" quotient: x,y:A//B[x; y] es-loc: loc(e) Id: Id es-le-before: loc(e) implies: P  Q CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  es-le: e loc e'  RepUR: Error :RepUR,  es-locl: (e <loc e') list: type List es-before: before(e) Unfold: Error :Unfold,  RepeatFor: Error :RepeatFor,  AssertBY: Error :AssertBY,  bfalse: ff D: Error :D,  tactic: Error :tactic,  void: Void in-eclass: e  X eq_knd: a = b fpf-dom: x  dom(f) false: False btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit IdLnk: IdLnk base: Base
Lemmas :  bag-combine-single-right bag-combine-single-left bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf eo-forward-first-trivial eo-forward-not-first bag-combine-empty-right es-locl_wf subtype_rel_self es-base-E_wf es-before_wf3 es-before_wf subtype_rel_wf Id_wf es-before_wf2 permutation_wf bag-combine-append-left es-le_wf iff_wf rev_implies_wf subtype_rel_bag subtype_rel_set subtype_rel_sets es-le_weakening single-bag_wf bag-combine_wf ifthenelse_wf eo-forward_wf es-first_wf empty-bag_wf member-eo-forward-E es-loc_wf sq_stable__all sq_stable_from_decidable decidable__es-le assert_wf uiff_wf assert-eq-id subtype_base_sq bag-empty-append true_wf squash_wf bag-append_wf eclass_wf event-ordering+_inc member_wf bag_wf es-E_wf event-ordering+_wf bind-class_wf return-class_wf

\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].    (X  >x>  return-class(x)  =  X)


Date html generated: 2011_08_16-AM-11_35_22
Last ObjectModification: 2011_06_20-AM-00_29_20

Home Index