{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [base:B]. [f:B  A  B].
  [X:EClass(A)]. [size:]. [num:A  ]. [P:A  ]. [e:E].
    Collect(size v's from X with maximum num[v] such that P[v]
             initialze x:=base   on each  v set x:=f[x;v])(e)
    = <num[X(e)]
      , list_accum(w,v.f[w;v];
                   base;
                   mapfilter(e.X(e);e'.(num[X(e')] = num[X(e)]);(X)(e)))
      > 
    supposing e  Collect(size v's from X with maximum num[v] such that P[v]
                             initialze x:=base   on each  v set x:=f[x;v]) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter-accum: es-collect-filter-accum es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E eq_int: (i = j) assert: b bool: nat_plus: nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] lambda: x.A[x] function: x:A  B[x] pair: <a, b> product: x:A  B[x] universe: Type equal: s = t mapfilter: mapfilter(f;P;L) list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  implies: P  Q pi1: fst(t) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) Id: Id list: type List decide: case b of inl(x) =s[x] | inr(y) =t[y] le: A  B ge: i  j  not: A and: P  Q uiff: uiff(P;Q) axiom: Ax es-interface-predecessors: (X)(e) eq_int: (i = j) mapfilter: mapfilter(f;P;L) list_accum: list_accum(x,a.f[x; a];y;l) pair: <a, b> eclass-val: X(e) void: Void es-E-interface: E(X) less_than: a < b int: so_apply: x[s] product: x:A  B[x] so_apply: x[s1;s2] so_lambda: x.t[x] es-collect-filter-accum: es-collect-filter-accum in-eclass: e  X prop: assert: b uimplies: b supposing a bool: set: {x:A| B[x]}  nat: union: left + right nat_plus: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  outl: outl(x) eq_bool: p =b q lt_int: i <z j le_int: i z j null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_lnk: a = b es-eq-E: e = e' bimplies: p  q minus: -n collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) es-interface-accum: es-interface-accum(f;x;X) collect_filter: collect_filter() eq_knd: a = b fpf-dom: x  dom(f) bfalse: ff unit: Unit int_eq: if a=b  then c  else d eq_id: a = b suptype: suptype(S; T) squash: T do-apply: do-apply(f;x) spread: spread def pi2: snd(t) bnot: b bor: p q add: n + m it: inr: inr x  inl: inl x  es-filter-image: f[X] spreadn: spread4 natural_number: $n spreadn: spread3 es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) rev_implies: P  Q exists: x:A. B[x] btrue: tt atom_eq: atomeqn def sqequal: s ~ t or: P  Q append: as @ bs locl: locl(a) Knd: Knd atom: Atom$n isl: isl(x) can-apply: can-apply(f;x) guard: {T} sq_type: SQType(T) true: True int_nzero: false: False intensional-universe: IType real: grp_car: |g| l_member: (x  l) limited-type: LimitedType band: p  q filter: filter(P;l) length: ||as|| es-loc: loc(e) cand: A c B es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] iff: P  Q CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  RepUR: Error :RepUR,  RepeatFor: Error :RepeatFor,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  THENM: Error :THENM,  AssertBY: Error :AssertBY,  nil: [] p-outcome: Outcome rationals: list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L)
Lemmas :  product_subtype_base int_subtype_base set_subtype_base bl-all_wf list_accum_pair-sq length-as-accum bl-all-as-accum le_wf alle-lt_wf es-first-at_wf iff_weakening_uiff is-collect-filter-accum es-loc_wf filter_wf length_wf1 band_wf eq_int_wf intensional-universe_wf false_wf ifthenelse_wf true_wf length_wf_nat list-subtype l_member_wf filter_type uiff_inversion assert-eq-id subtype_base_sq bool_subtype_base assert_elim nat_plus_properties btrue_wf es-collect-accum_wf es-filter-image-val2 bor_wf pi1_wf_top bnot_wf pi2_wf es-is-filter-image2 iff_wf rev_implies_wf squash_wf do-apply_wf can-apply_wf es-collect-accum-val bfalse_wf unit_wf es-interface-val_wf2 assert_functionality_wrt_uiff es-interface-val_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot isl_wf Id_wf es-interface-predecessors_wf eclass-val_wf es-collect-filter-accum_wf nat_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-E_wf top_wf subtype_rel_wf es-interface-subtype_rel2 es-interface-top member_wf eclass_wf in-eclass_wf assert_wf bool_wf nat_plus_wf es-E-interface_wf mapfilter_wf list_accum_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[base:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[size:\mBbbN{}\msupplus{}].
\mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[e:E].
    Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v]    initialze  x:=base 
                      on  each    v  set  x:=f[x;v])(e)
    =  <num[X(e)]
        ,  list\_accum(w,v.f[w;v];base;mapfilter(\mlambda{}e.X(e);\mlambda{}e'.(num[X(e')]  =\msubz{}  num[X(e)]);\mleq{}(X)(e)))
        > 
    supposing  \muparrow{}e  \mmember{}\msubb{}  Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v]    initialze  x:=base 
                                                      on  each    v  set  x:=f[x;v])


Date html generated: 2011_08_16-PM-05_30_53
Last ObjectModification: 2010_11_15-PM-02_54_47

Home Index