{ [B:Type]. [n:]. [m:n + 1]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:funtype(n - m;x.(A (x + m));bag(B))]. [b:B].
    (bag-member(B;b;concat-lifting-list(n;bags) m f)
     lst:k:{m..n}  (A k)
          (([k:{m..n}]. bag-member(A k;lst k;bags k))
           bag-member(B;b;uncurry-gen(n) m (x.f) lst))) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-list: concat-lifting-list(n;bags) uncurry-gen: uncurry-gen(n) int_seg: {i..j} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q apply: f a lambda: x.A[x] function: x:A  B[x] subtract: n - m add: n + m natural_number: $n universe: Type bag-member: bag-member(T;x;bs) bag: bag(T) funtype: funtype(n;A;T)
Definitions :  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  Complete: Error :Complete,  CollapseTHEN: Error :CollapseTHEN,  bag: bag(T) lambda: x.A[x] Auto: Error :Auto,  set: {x:A| B[x]}  squash: T function: x:A  B[x] implies: P  Q product: x:A  B[x] and: P  Q iff: P  Q isect: x:A. B[x] uall: [x:A]. B[x] int_seg: {i..j} universe: Type nat: apply: f a quotient: x,y:A//B[x; y] funtype: funtype(n;A;T) primrec: primrec(n;b;c) member: t  T equal: s = t all: x:A. B[x] subtract: n - m int: subtype: S  T rationals: real: le: A  B not: A false: False void: Void less_than: a < b add: n + m minus: -n lelt: i  j < k prop: subtype_rel: A r B uiff: uiff(P;Q) uimplies: b supposing a ge: i  j  natural_number: $n strong-subtype: strong-subtype(A;B) grp_car: |g| exists: x:A. B[x] bag-member: bag-member(T;x;bs) so_lambda: x.t[x] rev_implies: P  Q true: True concat-lifting-list: concat-lifting-list(n;bags) ycomb: Y fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) uncurry-gen: uncurry-gen(n) limited-type: LimitedType sq_type: SQType(T) guard: {T} RepUR: Error :RepUR,  Unfold: Error :Unfold,  sqequal: s ~ t eq_int: (i = j) btrue: tt MaAuto: Error :MaAuto,  lifting-gen-list-rev: Error :lifting-gen-list-rev,  bag-union: bag-union(bbs) top: Top bool: single-bag: {x} concat: concat(ll) append: as @ bs list: type List nil: [] permutation: permutation(T;L1;L2) es-E-interface: E(X) map: map(f;as) ifthenelse: if b then t else f fi  sq_stable: SqStable(P) classrel: v  X(e) fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) i-member: r  I rleq: x  y rnonneg: rnonneg(r) req: x = y bfalse: ff pair: <a, b> bag-combine: xbs.f[x] qabs: |r| filter: filter(P;l) bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y decide: case b of inl(x) =s[x] | inr(y) =t[y] RepeatFor: Error :RepeatFor,  tactic: Error :tactic,  l_member: (x  l) or: P  Q union: left + right so_apply: x[s] unit: Unit le_int: i z j lt_int: i <z j Knd: Knd locl: locl(a) Id: Id IdLnk: IdLnk cand: A c B intensional-universe: IType gt: i > j apply_gen: apply_gen(n;lst) BHyp: Error :BHyp,  suptype: suptype(S; T)
Lemmas :  apply_gen_wf apply_larger_list apply_uncurry gt_wf btrue_neq_bfalse bool_cases intensional-universe_wf int_sq ifthenelse_wf eqtt_to_assert eqff_to_assert uiff_transitivity assert_of_bnot not_functionality_wrt_uiff bnot_wf UnknownObject true_wf primrec_wf temp-lifting-gen-list-rev_wf bag-combine_wf UnknownObject assert_of_eq_int iff_weakening_uiff iff_functionality_wrt_iff assert_wf iff_imp_equal_bool bfalse_wf sq_stable__bag-member eq_int_eq_true bool_wf bool_subtype_base eq_int_wf ycomb-unroll bag-subtype-list subtype_rel_wf top_wf permutation_wf append_nil_sq int_seg_properties subtype_base_sq int_subtype_base nat_ind_tp nat_properties ge_wf concat-lifting-list_wf uncurry-gen_wf2 rev_implies_wf iff_wf squash_wf uall_wf bag-member_wf funtype_wf bag_wf int_seg_wf nat_wf member_wf le_wf not_wf false_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[f:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));bag(B))].  \mforall{}[b:B].
    (bag-member(B;b;concat-lifting-list(n;bags)  m  f)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\{m..n\msupminus{}\}  {}\mrightarrow{}  (A  k)
                ((\mforall{}[k:\{m..n\msupminus{}\}].  bag-member(A  k;lst  k;bags  k))
                \mwedge{}  bag-member(B;b;uncurry-gen(n)  m  (\mlambda{}x.f)  lst)))


Date html generated: 2011_08_17-PM-06_08_19
Last ObjectModification: 2011_06_01-PM-06_38_34

Home Index