{ [A:']. [dfps:DataflowProgram(A) List].
    [B:{B:Type| valueall-type(B)} ].
    [F:k:||dfps||  bag(df-program-type(dfps[k]))  bag(B)  bag(B)].
    [buf:bag(B)]. [P:bag(B)  ].
      (feedback-df-program(B;F;buf;P;dfps)  DataflowProgram(A)) 
    supposing 0 < ||dfps|| }

{ Proof }



Definitions occuring in Statement :  feedback-df-program: feedback-df-program(B;F;buf;P;dfps) df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) select: l[i] length: ||as|| bool: int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] member: t  T less_than: a < b set: {x:A| B[x]}  function: x:A  B[x] list: type List natural_number: $n universe: Type bag: bag(T) valueall-type: valueall-type(T)
Definitions :  list_ind: list_ind def permutation: permutation(T;L1;L2) l_member: (x  l) feedback-df-prog1: feedback-df-prog1(B;G;P;buf;dfp) lambda: x.A[x] feedback-df-prog2: feedback-df-prog2(B;G;P;buf;dfp1;dfp2) ifthenelse: if b then t else f fi  tl: tl(l) hd: hd(l) bfalse: ff limited-type: LimitedType btrue: tt le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q lt_int: i <z j assert: b bnot: b unit: Unit union: left + right fpf: a:A fp-B[a] quotient: x,y:A//B[x; y] strong-subtype: strong-subtype(A;B) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B top: Top grp_car: |g| product: x:A  B[x] nat: guard: {T} and: P  Q lelt: i  j < k void: Void implies: P  Q false: False not: A le: A  B real: rationals: subtype: S  T int: length: ||as|| natural_number: $n all: x:A. B[x] axiom: Ax feedback-df-program: feedback-df-program(B;F;buf;P;dfps) equal: s = t list: type List less_than: a < b valueall-type: valueall-type(T) int_seg: {i..j} select: l[i] df-program-type: df-program-type(dfp) uimplies: b supposing a isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] member: t  T dataflow-program: DataflowProgram(A) prop: bool: bag: bag(T) set: {x:A| B[x]}  universe: Type function: x:A  B[x] minus: -n add: n + m subtract: n - m pi2: snd(t) bag-separate: bag-separate(bs) pi1: fst(t) bag-merge: bag-merge(as;bs) parallel-df-prog2: parallel-df-prog2(B;G;dfp1;dfp2) cons: [car / cdr] atom: Atom$n atom: Atom rec: rec(x.A[x]) tunion: x:A.B[x] b-union: A  B filter: filter(P;l) MaAuto: Error :MaAuto,  tactic: Error :tactic,  Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  fpf-cap: f(x)?z p-outcome: Outcome sq_type: SQType(T) fpf-dom: x  dom(f) nil: [] proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j or: P  Q map: map(f;as) intensional-universe: IType pair: <a, b> true: True squash: T RepeatFor: Error :RepeatFor,  iff: P  Q rev_implies: P  Q label: ...$L... t nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} exists: x:A. B[x] i-finite: i-finite(I) i-closed: i-closed(I) dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset: FSet{T} fset-closed: (s closed under fs) Id: Id IdLnk: IdLnk Knd: Knd MaName: MaName l_disjoint: l_disjoint(T;l1;l2) decidable: Dec(P) so_apply: x[s] is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P)
Lemmas :  length_wf2 sq_stable__valueall-type decidable__equal_int length_nil bfalse_wf btrue_wf select_cons_tl rev_implies_wf iff_wf squash_wf true_wf intensional-universe_wf subtype_rel-equal int_seg_properties length_cons non_neg_length bag-separate_wf pi2_wf subtype_base_sq int_subtype_base subtype_rel_self l_member_wf list-subtype unit_wf union-valueall-type df-program-type-valueall-type pi1_wf_top bag-merge_wf parallel-df-prog2_wf nat_properties nat_ind_tp bool_wf member_wf dataflow-program_wf uall_wf valueall-type_wf int_seg_wf bag_wf df-program-type_wf select_wf length_wf1 guard_wf le_wf nat_wf comp_nat_ind_tp length_wf_nat top_wf uiff_transitivity eqtt_to_assert assert_of_lt_int assert_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf bnot_wf lt_int_wf ifthenelse_wf eq_int_wf tl_wf hd_wf feedback-df-prog2_wf feedback-df-prog1_wf ge_wf not_wf false_wf pos_length3 permutation_wf subtype_rel_wf assert_of_eq_int assert_of_bnot not_functionality_wrt_uiff

\mforall{}[A:\mBbbU{}'].  \mforall{}[dfps:DataflowProgram(A)  List].
    \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[F:k:\mBbbN{}||dfps||  {}\mrightarrow{}  bag(df-program-type(dfps[k]))
                                                                              {}\mrightarrow{}  bag(B)
                                                                              {}\mrightarrow{}  bag(B)].  \mforall{}[buf:bag(B)].  \mforall{}[P:bag(B)  {}\mrightarrow{}  \mBbbB{}].
        (feedback-df-program(B;F;buf;P;dfps)  \mmember{}  DataflowProgram(A)) 
    supposing  0  <  ||dfps||


Date html generated: 2011_08_16-AM-09_45_41
Last ObjectModification: 2011_06_03-AM-11_56_26

Home Index