{ [Info:Type]. [es:EO+(Info)]. [e:E]. [n:]. [A:Type]. [f:A  ].
  [Z:EClass(A)].
    uiff(if e  ((maximum f[x]  0 with x from Z))'
    then ((maximum f[x]  0 with x from Z))'(e)
    else -1
    fi   n;[e':E(Z)]. f[Z(e')]  n supposing e' loc e ) 
    supposing e  Z }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' imax-class: (maximum f[v]  lb with v from X) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-E: E assert: b ifthenelse: if b then t else f fi  nat: uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] le: A  B not: A function: x:A  B[x] minus: -n natural_number: $n universe: Type
Definitions :  cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) limited-type: LimitedType bfalse: ff eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit isl: isl(x) can-apply: can-apply(f;x) imax: imax(a;b) length: ||as|| es-locl: (e <loc e') l_member: (x  l) fpf: a:A fp-B[a] guard: {T} btrue: tt sq_type: SQType(T) bool: true: True real: grp_car: |g| strong-subtype: strong-subtype(A;B) or: P  Q ge: i  j  minus: -n natural_number: $n imax-class: (maximum f[v]  lb with v from X) es-prior-val: (X)' eclass-val: X(e) so_apply: x[s] rev_implies: P  Q iff: P  Q so_lambda: x.t[x] less_than: a < b es-le: e loc e'  es-E-interface: E(X) pair: <a, b> void: Void product: x:A  B[x] and: P  Q uiff: uiff(P;Q) decide: case b of inl(x) =s[x] | inr(y) =t[y] implies: P  Q false: False le: A  B int: in-eclass: e  X union: left + right prop: not: A uimplies: b supposing a lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) set: {x:A| B[x]}  assert: b nat: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ universe: Type all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] es-E: E event_ordering: EO equal: s = t event-ordering+: EO+(Info) member: t  T tactic: Error :tactic,  exists: x:A. B[x] es-causl: (e < e') sqequal: s ~ t es-loc: loc(e) es-causle: e c e' es-init: es-init(es;e) es-pred: pred(e) Id: Id existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) decidable: Dec(P) squash: T record: record(x.T[x]) it: es-prior-interface: prior(X) es-interface-at: X@i intensional-universe: IType tag-by: zT fset: FSet{T} isect2: T1  T2 b-union: A  B list: type List fpf-cap: f(x)?z is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) cand: A c B
Lemmas :  is-prior-val sq_stable__assert intensional-universe_wf set_subtype_base squash_wf es-loc_wf decidable__es-locl es-le-not-locl es-le-loc btrue_neq_bfalse not_assert_elim decidable__es-le imax-class-lb iff_functionality_wrt_iff es-locl_wf es-causle-le es-causl_wf Id_wf es-locl_transitivity1 es-le_weakening is-imax-class prior-val-val int_subtype_base false_wf not_wf le_wf ifthenelse_wf uall_wf es-E-interface_wf es-le_wf uiff_wf es-interface-top member_wf eclass_wf in-eclass_wf assert_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf nat_wf eclass-val_wf true_wf bool_wf subtype_base_sq bool_subtype_base assert_elim subtype_rel_wf imax-class_wf es-prior-val_wf top_wf rev_implies_wf iff_wf nat_properties es-interface-subtype_rel2 iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[Z:EClass(A)].
    uiff(if  e  \mmember{}\msubb{}  ((maximum  f[x]  \mgeq{}  0  with  x  from  Z))'
    then  ((maximum  f[x]  \mgeq{}  0  with  x  from  Z))'(e)
    else  -1
    fi    \mleq{}  n;\mforall{}[e':E(Z)].  f[Z(e')]  \mleq{}  n  supposing  e'  \mleq{}loc  e  ) 
    supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  Z


Date html generated: 2011_08_16-PM-05_20_19
Last ObjectModification: 2011_06_20-AM-01_21_19

Home Index