{ [Info:{Info:Type| Info} ]
    B:{B:Type| valueall-type(B)} . n:.
      [A:n  Type]. [Xs:k:n  EClass(A k)].
        ((k:n. NormalLProgrammable(A k;Xs k))
         (init:Id  bag(B). F:Id  k:n  bag(A k)  bag(B)  bag(B).
              (((i:Id. b:bag(B). f:k:n  bag(A k).
                    ((k:n. ((f k) = {}))  ((F i f b) = {})))
               (i:Id. b:bag(B).  ((F i (i.{}) b) = {})))
               NormalLProgrammable(B;rec-comb(Xs;F;init))))) }

{ Proof }



Definitions occuring in Statement :  normal-locally-programmable: NormalLProgrammable(A;X) rec-comb: rec-comb(X;f;init) eclass: EClass(A[eo; e]) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies: P  Q or: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Lemmas :  feedback-df-program-case1-meaning permutation_wf last_wf data-stream_wf df-program-meaning_wf iff_wf rev_implies_wf assert_wf null_wf3 dataflow_wf feedback-df-program-case2-meaning rec-comb-locally-programmable es-interface-top es-le-before_wf es-info_wf sq_stable__subtype_rel es-base-E_wf pos_length2 null-data-stream null-map es-le-before_wf2 es-le_wf es-le-before-not-null subtype_base_sq bool_subtype_base int-rational b-union_wf int_nzero_wf tunion_wf bool_wf ifthenelse_wf rationals_wf rational-has-value int_inc_real real-has-value btrue_wf bfalse_wf Id-has-valueall list-valueall-type set-valueall-type int-valueall-type event-ordering+_inc es-E_wf event-ordering+_wf eclass_wf int_seg_wf normal-locally-programmable_wf bag_wf Id_wf empty-bag_wf squash_wf dataflow-program_wf local-program-at_wf rec-comb_wf nat_wf valueall-type_wf sq_stable__all sq_stable_from_decidable es-loc_wf upto_wf map_wf feedback-df-program-case2_wf select_wf df-program-type_wf member_wf le_wf not_wf false_wf subtype_rel_wf subtype_rel_function length_wf1 subtype_rel_self subtype_rel_dep_function true_wf length_wf_nat int_seg_properties length-map nat_properties length-map-sq top_wf subtype_rel_set subtype_rel_sets length_upto select-map subtype_rel_bag unit_wf intensional-universe_wf select-upto subtype_rel-equal feedback-df-program-case1_wf

\mforall{}[Info:\{Info:Type|  \mdownarrow{}Info\}  ]
    \mforall{}B:\{B:Type|  valueall-type(B)\}  .  \mforall{}n:\mBbbN{}.
        \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].
            ((\mforall{}k:\mBbbN{}n.  NormalLProgrammable(A  k;Xs  k))
            {}\mRightarrow{}  (\mforall{}init:Id  {}\mrightarrow{}  bag(B).  \mforall{}F:Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B).
                        (((\mdownarrow{}\mforall{}i:Id.  \mforall{}b:bag(B).  \mforall{}f:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k).    ((\mexists{}k:\mBbbN{}n.  ((f  k)  =  \{\}))  {}\mRightarrow{}  ((F  i  f  b)  =  \{\})))
                        \mvee{}  (\mdownarrow{}\mforall{}i:Id.  \mforall{}b:bag(B).    ((F  i  (\mlambda{}i.\{\})  b)  =  \{\})))
                        {}\mRightarrow{}  NormalLProgrammable(B;rec-comb(Xs;F;init)))))


Date html generated: 2011_08_16-PM-06_17_42
Last ObjectModification: 2011_07_25-PM-05_55_05

Home Index