Nuprl Lemma : hdf-compose2-ap

[A,B,C:Type]. ∀[X:hdataflow(A;B ─→ bag(C))]. ∀[Y:hdataflow(A;B)].
  ∀[a:A]. (X Y(a) = <(fst(X(a))) (fst(Y(a))), ∪f∈snd(X(a)).∪b∈snd(Y(a)).f b> ∈ (hdataflow(A;C) × bag(C))) 
  supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose2: Y hdf-ap: X(a) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) apply: a function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T bag-combine: x∈bs.f[x] bag: bag(T)
Lemmas :  hdf-halted_wf bool_wf eqtt_to_assert hdf_ap_halt_lemma hdataflow-ext bag_wf unit_wf2 hdf_halted_inl_red_lemma false_wf hdf_halted_halt_red_lemma bag_combine_empty_lemma hdataflow_wf hdf-ap-inl hdf-halt_wf empty-bag_wf true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag-combine-empty-right not_wf hdf-ap-run valueall-type-has-valueall bag-valueall-type bag-combine_wf evalall-reduce hdf-compose2_wf valueall-type_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:hdataflow(A;B)].
    \mforall{}[a:A].  (X  o  Y(a)  =  <(fst(X(a)))  o  (fst(Y(a))),  \mcup{}f\mmember{}snd(X(a)).\mcup{}b\mmember{}snd(Y(a)).f  b>) 
    supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_05_28
Last ObjectModification: 2015_01_27-PM-00_16_58

Home Index