Nuprl Lemma : hdf-compose2-ap
∀[A,B,C:Type]. ∀[X:hdataflow(A;B ─→ bag(C))]. ∀[Y:hdataflow(A;B)].
  ∀[a:A]. (X o Y(a) = <(fst(X(a))) o (fst(Y(a))), ∪f∈snd(X(a)).∪b∈snd(Y(a)).f b> ∈ (hdataflow(A;C) × bag(C))) 
  supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag-combine: ∪x∈bs.f[x]
, 
bag: bag(T)
Lemmas : 
hdf-halted_wf, 
bool_wf, 
eqtt_to_assert, 
hdf_ap_halt_lemma, 
hdataflow-ext, 
bag_wf, 
unit_wf2, 
hdf_halted_inl_red_lemma, 
false_wf, 
hdf_halted_halt_red_lemma, 
bag_combine_empty_lemma, 
hdataflow_wf, 
hdf-ap-inl, 
hdf-halt_wf, 
empty-bag_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag-combine-empty-right, 
not_wf, 
hdf-ap-run, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-combine_wf, 
evalall-reduce, 
hdf-compose2_wf, 
valueall-type_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:hdataflow(A;B)].
    \mforall{}[a:A].  (X  o  Y(a)  =  <(fst(X(a)))  o  (fst(Y(a))),  \mcup{}f\mmember{}snd(X(a)).\mcup{}b\mmember{}snd(Y(a)).f  b>) 
    supposing  valueall-type(C)
Date html generated:
2015_07_17-AM-08_05_28
Last ObjectModification:
2015_01_27-PM-00_16_58
Home
Index