Nuprl Lemma : hdf-memory_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B ─→ B)]. ∀[bs:bag(B)]. hdf-memory(X;bs) ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement :
hdf-memory: hdf-memory(X;bs)
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
,
bag: bag(T)
Lemmas :
valueall-type_wf,
bag_wf,
hdataflow_wf,
bfalse_wf,
hdf-ap_wf,
valueall-type-has-valueall,
bag-valueall-type,
bag-combine_wf,
bag-map_wf,
evalall-reduce,
bag-null_wf,
bool_wf,
eqtt_to_assert,
assert-bag-null,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
equal-wf-T-base,
mk-hdf_wf
\mforall{}[A,B:Type]. \mforall{}[X:hdataflow(A;B {}\mrightarrow{} B)]. \mforall{}[bs:bag(B)].
hdf-memory(X;bs) \mmember{} hdataflow(A;B) supposing valueall-type(B)
Date html generated:
2015_07_17-AM-08_05_59
Last ObjectModification:
2015_01_27-PM-00_16_15
Home
Index