Nuprl Lemma : hdf-parallel-ap

[A,B:Type]. ∀[X,Y:hdataflow(A;B)]. ∀[a:A].
  || Y(a) = <fst(X(a)) || fst(Y(a)), (snd(X(a))) (snd(Y(a)))> ∈ (hdataflow(A;B) × bag(B)) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  hdf-parallel: || Y hdf-ap: X(a) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T bag-append: as bs bag: bag(T)
Lemmas :  hdf-halted_wf bool_wf eqtt_to_assert hdf_ap_halt_lemma hdataflow-ext bag_wf unit_wf2 hdf_halted_inl_red_lemma false_wf hdf_halted_halt_red_lemma empty_bag_append_lemma hdf-halt_wf empty-bag_wf true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot hdf-ap-run hdf-ap-inl valueall-type-has-valueall bag-valueall-type evalall-reduce hdf-parallel_wf not_wf bag-append_wf valueall-type_wf hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[X,Y:hdataflow(A;B)].  \mforall{}[a:A].
    X  ||  Y(a)  =  <fst(X(a))  ||  fst(Y(a)),  (snd(X(a)))  +  (snd(Y(a)))>  supposing  valueall-type(B)



Date html generated: 2015_07_17-AM-08_06_22
Last ObjectModification: 2015_01_27-PM-00_17_05

Home Index