Nuprl Lemma : setTC-induction

[P:Set{i:l} ⟶ ℙ']. ((∀a:Set{i:l}. ((∀x:Set{i:l}. ((x ∈ setTC(a))  P[x]))  P[a]))  (∀s:Set{i:l}. P[s]))


Proof




Definitions occuring in Statement :  setTC: setTC(a) Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} top: Top or: P ∨ Q and: P ∧ Q iff: ⇐⇒ Q exists: x:A. B[x] uimplies: supposing a setTC: Error :setTC,  all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] member: t ∈ T implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  coSet-seteq-Set setTC-set-function setmem-setunionfun setTC_functionality seteq_weakening setmem_functionality setmem-mk-set-sq coSet-mem-Set-implies-Set coSet_wf setunionfun_wf setmem-set-add mk-set_wf set-induction set-subtype-coSet setmem_wf Set_wf all_wf
Rules used in proof :  equalitySymmetry equalityTransitivity voidEquality voidElimination isect_memberEquality unionElimination productElimination setEquality dependent_pairFormation independent_isectElimination rename setElimination functionExtensionality dependent_functionElimination because_Cache independent_functionElimination universeEquality applyEquality hypothesisEquality cumulativity functionEquality lambdaEquality sqequalRule hypothesis isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P:Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    ((\mforall{}a:Set\{i:l\}.  ((\mforall{}x:Set\{i:l\}.  ((x  \mmember{}  setTC(a))  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  P[a]))  {}\mRightarrow{}  (\mforall{}s:Set\{i:l\}.  P[s]))



Date html generated: 2018_07_29-AM-10_03_50
Last ObjectModification: 2018_07_18-PM-04_57_59

Theory : constructive!set!theory


Home Index