Nuprl Lemma : setTC-induction
∀[P:Set{i:l} ⟶ ℙ']. ((∀a:Set{i:l}. ((∀x:Set{i:l}. ((x ∈ setTC(a)) ⇒ P[x])) ⇒ P[a])) ⇒ (∀s:Set{i:l}. P[s]))
Proof
Definitions occuring in Statement : 
setTC: setTC(a), 
Set: Set{i:l}, 
setmem: (x ∈ s), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}, 
top: Top, 
or: P ∨ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
setTC: Error :setTC, 
all: ∀x:A. B[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet-seteq-Set, 
setTC-set-function, 
setmem-setunionfun, 
setTC_functionality, 
seteq_weakening, 
setmem_functionality, 
setmem-mk-set-sq, 
coSet-mem-Set-implies-Set, 
coSet_wf, 
setunionfun_wf, 
setmem-set-add, 
mk-set_wf, 
set-induction, 
set-subtype-coSet, 
setmem_wf, 
Set_wf, 
all_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
unionElimination, 
productElimination, 
setEquality, 
dependent_pairFormation, 
independent_isectElimination, 
rename, 
setElimination, 
functionExtensionality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
universeEquality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P:Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    ((\mforall{}a:Set\{i:l\}.  ((\mforall{}x:Set\{i:l\}.  ((x  \mmember{}  setTC(a))  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  P[a]))  {}\mRightarrow{}  (\mforall{}s:Set\{i:l\}.  P[s]))
 Date html generated: 
2018_07_29-AM-10_03_50
 Last ObjectModification: 
2018_07_18-PM-04_57_59
Theory : constructive!set!theory
Home
Index