Nuprl Lemma : setmem-piset-implies

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A)  (a2 ∈ A)  seteq(a1;a2)  seteq(B[a1];B[a2])))
   (x ∈ piset(A;a.B[a]))
   ((x ⊆ Σa:A.B[a]) ∧ (∀a:coSet{i:l}. ((a ∈ A)  (∃b:coSet{i:l}. ((b ∈ B[a]) ∧ ((a,b) ∈ x)))))))


Proof




Definitions occuring in Statement :  piset: piset(A;a.B[a]) sigmaset: Σa:A.B[a] setsubset: (a ⊆ b) orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  orderedpairset: (a,b) guard: {T} rev_implies:  Q cand: c∧ B exists: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q prop: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  co-seteq-iff singleset_functionality pairset_functionality seteq_functionality setmem-iff singleset_wf pairset_wf seteq_weakening exists_wf setmem-sigmaset orderedpairset_wf setmem_functionality_1 sigmaset_wf setsubset-iff seteq_wf all_wf piset_wf coSet_wf setmem-piset-1 set-dom_wf setmem_wf set-item_wf set-item-mem
Rules used in proof :  andLevelFunctionality existsFunctionality addLevel productEquality dependent_pairFormation functionEquality instantiate because_Cache independent_pairFormation independent_functionElimination productElimination cumulativity setEquality applyEquality lambdaEquality sqequalRule isectElimination dependent_set_memberEquality hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  (x  \mmember{}  piset(A;a.B[a]))
    {}\mRightarrow{}  ((x  \msubseteq{}  \mSigma{}a:A.B[a])  \mwedge{}  (\mforall{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  {}\mRightarrow{}  (\mexists{}b:coSet\{i:l\}.  ((b  \mmember{}  B[a])  \mwedge{}  ((a,b)  \mmember{}  x)))))))



Date html generated: 2018_07_29-AM-10_04_47
Last ObjectModification: 2018_07_18-PM-04_33_48

Theory : constructive!set!theory


Home Index