Nuprl Lemma : setmem-piset-1
∀A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.
  ((x ∈ piset(A;a.B[a]))
  
⇐⇒ ∃f:t:set-dom(A) ⟶ set-dom(B[set-item(A;t)])
       ∀z:coSet{i:l}. ((z ∈ x) 
⇐⇒ ∃t:set-dom(A). seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f t)))))
Proof
Definitions occuring in Statement : 
piset: piset(A;a.B[a])
, 
orderedpairset: (a,b)
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
set-item: set-item(s;x)
, 
set-dom: set-dom(s)
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uimplies: b supposing a
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
guard: {T}
, 
top: Top
, 
mk-coset: mk-coset(T;f)
, 
piset: piset(A;a.B[a])
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel-equal, 
co-seteq-iff, 
subtype_rel_self, 
seteq_weakening, 
setmem_functionality, 
mk-coset_wf, 
setmem-coset, 
setmem-mk-coset, 
coSet_subtype, 
subtype_coSet, 
orderedpairset_wf, 
seteq_wf, 
iff_wf, 
all_wf, 
set-item_wf, 
set-item-mem, 
set-dom_wf, 
exists_wf, 
coSet_wf, 
piset_wf, 
setmem_wf
Rules used in proof : 
setElimination, 
independent_isectElimination, 
impliesLevelFunctionality, 
andLevelFunctionality, 
allLevelFunctionality, 
independent_functionElimination, 
impliesFunctionality, 
allFunctionality, 
existsFunctionality, 
addLevel, 
dependent_pairFormation, 
rename, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
dependent_functionElimination, 
because_Cache, 
functionExtensionality, 
universeEquality, 
functionEquality, 
instantiate, 
productElimination, 
cumulativity, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    ((x  \mmember{}  piset(A;a.B[a]))
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:t:set-dom(A)  {}\mrightarrow{}  set-dom(B[set-item(A;t)])
              \mforall{}z:coSet\{i:l\}
                  ((z  \mmember{}  x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(A).  seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f  t)))))
Date html generated:
2018_07_29-AM-10_04_31
Last ObjectModification:
2018_07_18-PM-04_20_32
Theory : constructive!set!theory
Home
Index