Nuprl Lemma : setmem-piset-1

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.
  ((x ∈ piset(A;a.B[a]))
  ⇐⇒ ∃f:t:set-dom(A) ⟶ set-dom(B[set-item(A;t)])
       ∀z:coSet{i:l}. ((z ∈ x) ⇐⇒ ∃t:set-dom(A). seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f t)))))


Proof




Definitions occuring in Statement :  piset: piset(A;a.B[a]) orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) set-item: set-item(s;x) set-dom: set-dom(s) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uimplies: supposing a pi2: snd(t) pi1: fst(t) set-dom: set-dom(s) set-item: set-item(s;x) guard: {T} top: Top mk-coset: mk-coset(T;f) piset: piset(A;a.B[a]) subtype_rel: A ⊆B exists: x:A. B[x] rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  subtype_rel-equal co-seteq-iff subtype_rel_self seteq_weakening setmem_functionality mk-coset_wf setmem-coset setmem-mk-coset coSet_subtype subtype_coSet orderedpairset_wf seteq_wf iff_wf all_wf set-item_wf set-item-mem set-dom_wf exists_wf coSet_wf piset_wf setmem_wf
Rules used in proof :  setElimination independent_isectElimination impliesLevelFunctionality andLevelFunctionality allLevelFunctionality independent_functionElimination impliesFunctionality allFunctionality existsFunctionality addLevel dependent_pairFormation rename voidEquality voidElimination isect_memberEquality hypothesis_subsumption dependent_set_memberEquality dependent_functionElimination because_Cache functionExtensionality universeEquality functionEquality instantiate productElimination cumulativity hypothesis setEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    ((x  \mmember{}  piset(A;a.B[a]))
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:t:set-dom(A)  {}\mrightarrow{}  set-dom(B[set-item(A;t)])
              \mforall{}z:coSet\{i:l\}
                  ((z  \mmember{}  x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(A).  seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f  t)))))



Date html generated: 2018_07_29-AM-10_04_31
Last ObjectModification: 2018_07_18-PM-04_20_32

Theory : constructive!set!theory


Home Index