Nuprl Lemma : csm-Kan-unit-cube-comp

I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀x:{unit-cube(I) ⊢ _(Kan)}.
  ((x)unit-cube-map((f g)) ((x)unit-cube-map(f))unit-cube-map(g) ∈ {unit-cube(K) ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  csm-Kan-cubical-type: (AK)s Kan-cubical-type: {X ⊢ _(Kan)} unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  equal_wf cube-set-map_wf unit-cube_wf unit-cube-map-comp csm-comp_wf unit-cube-map_wf iff_weakening_equal Kan-cubical-type_wf csm-Kan-comp csm-Kan-cubical-type_wf name-morph_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin instantiate lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality dependent_functionElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}x:\{unit-cube(I)  \mvdash{}  \_(Kan)\}.
    ((x)unit-cube-map((f  o  g))  =  ((x)unit-cube-map(f))unit-cube-map(g))



Date html generated: 2017_10_05-AM-10_24_09
Last ObjectModification: 2017_07_28-AM-11_22_16

Theory : cubical!sets


Home Index