Nuprl Lemma : csm-Kan-unit-cube-comp
∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀x:{unit-cube(I) ⊢ _(Kan)}.
  ((x)unit-cube-map((f o g)) = ((x)unit-cube-map(f))unit-cube-map(g) ∈ {unit-cube(K) ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
csm-Kan-cubical-type: (AK)s
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
unit-cube-map: unit-cube-map(f)
, 
unit-cube: unit-cube(I)
, 
name-comp: (f o g)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
cube-set-map_wf, 
unit-cube_wf, 
unit-cube-map-comp, 
csm-comp_wf, 
unit-cube-map_wf, 
iff_weakening_equal, 
Kan-cubical-type_wf, 
csm-Kan-comp, 
csm-Kan-cubical-type_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}x:\{unit-cube(I)  \mvdash{}  \_(Kan)\}.
    ((x)unit-cube-map((f  o  g))  =  ((x)unit-cube-map(f))unit-cube-map(g))
Date html generated:
2017_10_05-AM-10_24_09
Last ObjectModification:
2017_07_28-AM-11_22_16
Theory : cubical!sets
Home
Index