Nuprl Lemma : csm-Kan-comp
∀[Gamma,Delta,Z:CubicalSet]. ∀[s1:Z ⟶ Delta]. ∀[s2:Delta ⟶ Gamma]. ∀[AK:{Gamma ⊢ _(Kan)}].
  ((AK)s2 o s1 = ((AK)s2)s1 ∈ {Z ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
csm-Kan-cubical-type: (AK)s
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
uimplies: b supposing a
, 
csm-Kan-cubical-type: (AK)s
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
nameset: nameset(L)
, 
so_apply: x[s]
Lemmas referenced : 
Kan-cubical-type-equal, 
csm-Kan-cubical-type_wf, 
csm-comp_wf, 
Kan-cubical-type_wf, 
cube-set-map_wf, 
equal_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
csm-ap-comp-type, 
csm-ap-type_wf, 
iff_weakening_equal, 
list_wf, 
coordinate_name_wf, 
csm-ap-csm-comp, 
csm-ap_wf, 
subtype_rel_dep_function, 
nameset_wf, 
int_seg_wf, 
A-open-box_wf, 
subtype_rel_list, 
cubical-type-at_wf, 
csm-A-open-box, 
subtype_rel-equal, 
csm-type-at, 
I-cube_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination, 
dependent_pairEquality, 
instantiate, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionExtensionality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
functionEquality, 
lambdaFormation
Latex:
\mforall{}[Gamma,Delta,Z:CubicalSet].  \mforall{}[s1:Z  {}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[AK:\{Gamma  \mvdash{}  \_(Kan)\}].
    ((AK)s2  o  s1  =  ((AK)s2)s1)
Date html generated:
2017_10_05-AM-10_23_59
Last ObjectModification:
2017_07_28-AM-11_22_08
Theory : cubical!sets
Home
Index