Nuprl Lemma : csm-ap-comp-type

[Gamma,Delta,Z:CubicalSet]. ∀[s1:Z ⟶ Delta]. ∀[s2:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}].
  ((A)s2 s1 ((A)s2)s1 ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} uimplies: supposing a csm-ap-type: (AF)s csm-comp: F csm-ap: (s)x type-cat: TypeCat trans-comp: t1 t2 all: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] compose: g cube-set-map: A ⟶ B nat-trans: nat-trans(C;D;F;G) list: List cat-ob: cat-ob(C) pi1: fst(t) name-cat: NameCat cat-arrow: cat-arrow(C) pi2: snd(t) I-cube: X(I) functor-ob: ob(F) squash: T true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-type-equal csm-ap-type_wf csm-comp_wf cubical-type_wf cube-set-map_wf ap_mk_nat_trans_lemma cat_comp_tuple_lemma I-cube_wf list_wf coordinate_name_wf subtype_rel-equal cube-set-restriction_wf equal_wf csm-ap-restriction csm-ap_wf subtype_rel_self iff_weakening_equal squash_wf true_wf cubical-set_wf name-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule independent_isectElimination isect_memberEquality axiomEquality because_Cache productElimination dependent_functionElimination voidElimination voidEquality dependent_pairEquality imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality equalityTransitivity equalitySymmetry independent_functionElimination functionEquality

Latex:
\mforall{}[Gamma,Delta,Z:CubicalSet].  \mforall{}[s1:Z  {}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    ((A)s2  o  s1  =  ((A)s2)s1)



Date html generated: 2018_05_23-PM-06_28_49
Last ObjectModification: 2018_05_16-PM-02_30_29

Theory : cubical!sets


Home Index