Nuprl Lemma : csm-ap-comp-type
∀[Gamma,Delta,Z:CubicalSet]. ∀[s1:Z ⟶ Delta]. ∀[s2:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}].
  ((A)s2 o s1 = ((A)s2)s1 ∈ {Z ⊢ _})
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-type: {X ⊢ _}
, 
uimplies: b supposing a
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
type-cat: TypeCat
, 
trans-comp: t1 o t2
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
compose: f o g
, 
cube-set-map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
list: T List
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
name-cat: NameCat
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
I-cube: X(I)
, 
functor-ob: ob(F)
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-type-equal, 
csm-ap-type_wf, 
csm-comp_wf, 
cubical-type_wf, 
cube-set-map_wf, 
ap_mk_nat_trans_lemma, 
cat_comp_tuple_lemma, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
subtype_rel-equal, 
cube-set-restriction_wf, 
equal_wf, 
csm-ap-restriction, 
csm-ap_wf, 
subtype_rel_self, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
cubical-set_wf, 
name-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
dependent_pairEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}[Gamma,Delta,Z:CubicalSet].  \mforall{}[s1:Z  {}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    ((A)s2  o  s1  =  ((A)s2)s1)
Date html generated:
2018_05_23-PM-06_28_49
Last ObjectModification:
2018_05_16-PM-02_30_29
Theory : cubical!sets
Home
Index