Nuprl Lemma : cube-set-restriction-comp2
∀X:CubicalSet. ∀I,J,J2,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀a:X(I).
  g(f(a)) = (f o g)(a) ∈ X(K) supposing J = J2 ∈ (Cname List)
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-comp: (f o g), 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
coordinate_name: Cname, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
list_wf, 
coordinate_name_wf, 
cube-set-restriction_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
subtype_rel_self, 
name-morph_wf, 
I-cube_wf, 
squash_wf, 
true_wf, 
length_wf_nat, 
nat_wf, 
subtype_rel_wf, 
member_wf, 
cube-set-restriction-comp, 
iff_weakening_equal, 
all_wf, 
cubical-set_wf, 
isect_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
equalitySymmetry, 
because_Cache, 
addLevel, 
allFunctionality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
hyp_replacement, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}X:CubicalSet.  \mforall{}I,J,J2,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}a:X(I).
    g(f(a))  =  (f  o  g)(a)  supposing  J  =  J2
Date html generated:
2017_10_05-AM-10_12_01
Last ObjectModification:
2017_03_03-AM-01_52_42
Theory : cubical!sets
Home
Index