Nuprl Lemma : nameset_subtype_cons_diff

[I:Cname List]. ∀[x:nameset(I)].  (nameset(I) ⊆nameset([x I-[x]]))


Proof




Definitions occuring in Statement :  nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nameset: nameset(L) uimplies: supposing a subtype_rel: A ⊆B l_subset: l_subset(T;as;bs) all: x:A. B[x] implies:  Q prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) guard: {T} cand: c∧ B
Lemmas referenced :  nameset_subtype cons_wf coordinate_name_wf list-diff_wf cname_deq_wf nil_wf nameset_wf list_wf l_member_wf cons_member member_singleton or_wf equal_wf and_wf not_wf member-list-diff decidable__equal-coordinate_name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_isectElimination sqequalRule axiomEquality isect_memberEquality because_Cache lambdaFormation dependent_functionElimination productElimination independent_functionElimination addLevel orFunctionality independent_pairFormation impliesFunctionality andLevelFunctionality impliesLevelFunctionality unionElimination inlFormation inrFormation

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].    (nameset(I)  \msubseteq{}r  nameset([x  /  I-[x]]))



Date html generated: 2016_05_20-AM-09_28_16
Last ObjectModification: 2015_12_28-PM-04_48_30

Theory : cubical!sets


Home Index