Nuprl Lemma : nameset_subtype_cons_diff
∀[I:Cname List]. ∀[x:nameset(I)].  (nameset(I) ⊆r nameset([x / I-[x]]))
Proof
Definitions occuring in Statement : 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nameset: nameset(L)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
l_subset: l_subset(T;as;bs)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
nameset_subtype, 
cons_wf, 
coordinate_name_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
nameset_wf, 
list_wf, 
l_member_wf, 
cons_member, 
member_singleton, 
or_wf, 
equal_wf, 
and_wf, 
not_wf, 
member-list-diff, 
decidable__equal-coordinate_name
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
independent_pairFormation, 
impliesFunctionality, 
andLevelFunctionality, 
impliesLevelFunctionality, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].    (nameset(I)  \msubseteq{}r  nameset([x  /  I-[x]]))
Date html generated:
2016_05_20-AM-09_28_16
Last ObjectModification:
2015_12_28-PM-04_48_30
Theory : cubical!sets
Home
Index