Nuprl Lemma : app-univ-a

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (app(UA; f) EquivPath(G;A;B;f) ∈ {G ⊢ _:(Path_c𝕌 B)})


Proof




Definitions occuring in Statement :  univ-a: UA equiv-path: EquivPath(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-app: app(w; u) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] guard: {T} equiv-path: EquivPath(G;A;B;f) term-to-path: <>(a) cubical-lam: cubical-lam(X;b) pathtype: Path(A) csm-id: 1(X) csm-ap-term: (t)s cc-fst: p csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) cc-snd: q pi2: snd(t) squash: T prop: true: True
Lemmas referenced :  app-univ-a-1 equiv-path_wf path-type-sub-pathtype cubical-universe_wf paths-equal istype-cubical-term cubical-equiv_wf universe-decode_wf istype-cubical-universe-term cubical_set_wf csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf csm-cubical-lam interval-type_wf equiv_path_wf csm-cubical-universe csm-universe-decode cc-snd_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf csm-cubical-equiv csm-id-adjoin_wf csm-equiv_path cubical-term-eqcd csm-ap-id-term squash_wf true_wf cubical-type-cumulativity cubical-lam_wf csm-pathtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis applyEquality instantiate sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination universeIsType Error :memTop,  lambdaEquality_alt hyp_replacement imageElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality cumulativity universeEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (app(UA;  f)  =  EquivPath(G;A;B;f))



Date html generated: 2020_05_20-PM-07_31_43
Last ObjectModification: 2020_04_29-PM-11_10_12

Theory : cubical!type!theory


Home Index