Nuprl Lemma : csm-equiv_path

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((equiv_path(G;A;B;f))s+ equiv_path(H;(A)s;(B)s;(f)s) ∈ {H.𝕀 ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  equiv_path: equiv_path(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_path: equiv_path(G;A;B;f) let: let subtype_rel: A ⊆B all: x:A. B[x] csm+: tau+ csm-comp: F squash: T prop: true: True uimplies: supposing a implies:  Q guard: {T} and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equiv-path2_wf universe-decode_wf universe-comp-fun_wf cubical_set_cumulativity-i-j csm-universe-encode cube-context-adjoin_wf interval-type_wf equiv-path1_wf comp-fun-to-comp-op_wf csm+_wf_interval cube_set_map_wf istype-cubical-term cubical-equiv_wf istype-cubical-universe-term cubical_set_wf universe-encode_wf squash_wf true_wf composition-op_wf cubical-type-cumulativity2 cubical-type_wf csm-equiv-path1 csm-universe-decode csm-ap-term_wf cubical-term-eqcd csm-cubical-equiv cubical-universe_wf csm-cubical-universe cubical-term_wf composition-structure-cumulativity subtype_rel-equal equal_wf istype-universe csm-comp-fun-to-comp-op cube_set_map_cumulativity-i-j subtype_rel_self iff_weakening_equal composition-structure_wf csm-equiv-path2 csm-ap-type_wf subset-cubical-term2 sub_cubical_set_self csm-universe-comp-fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis hypothesisEquality instantiate applyEquality dependent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType equalityTransitivity lambdaEquality_alt imageElimination equalitySymmetry natural_numberEquality imageMemberEquality baseClosed Error :memTop,  independent_isectElimination cumulativity universeEquality hyp_replacement lambdaFormation_alt equalityIstype independent_functionElimination rename dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality setElimination productElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv\_path(G;A;B;f))s+  =  equiv\_path(H;(A)s;(B)s;(f)s))



Date html generated: 2020_05_20-PM-07_29_41
Last ObjectModification: 2020_04_30-AM-09_45_33

Theory : cubical!type!theory


Home Index