Nuprl Lemma : assert-isdM0
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))].  uiff(↑isdM0(x);x = 0 ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
isdM0: isdM0(x)
, 
dM0: 0
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-pairwise: fset-pairwise(x,y.R[x; y];s)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
true: True
, 
isdM0: isdM0(x)
, 
dM0: 0
, 
lattice-0: 0
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
Lemmas referenced : 
assert_wf, 
isdM0_wf, 
assert_witness, 
equal_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM0_wf, 
fset_wf, 
nat_wf, 
dM-point, 
dM0-sq-empty, 
fset-antichain_wf, 
names_wf, 
union-deq_wf, 
names-deq_wf, 
assert-fset-null
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionEquality, 
setElimination, 
rename, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    uiff(\muparrow{}isdM0(x);x  =  0)
Date html generated:
2016_10_26-PM-01_05_13
Last ObjectModification:
2016_07_12-AM-09_26_41
Theory : cubical!type!theory
Home
Index