Nuprl Lemma : assert-isdM0

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  uiff(↑isdM0(x);x 0 ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  isdM0: isdM0(x) dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: implies:  Q subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] guard: {T} so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  fset-antichain: fset-antichain(eq;ac) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: btrue: tt true: True isdM0: isdM0(x) dM0: 0 lattice-0: 0 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
Lemmas referenced :  assert_wf isdM0_wf assert_witness equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM0_wf fset_wf nat_wf dM-point dM0-sq-empty fset-antichain_wf names_wf union-deq_wf names-deq_wf assert-fset-null
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination applyEquality sqequalRule instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination voidEquality dependent_set_memberEquality natural_numberEquality unionEquality setElimination rename hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    uiff(\muparrow{}isdM0(x);x  =  0)



Date html generated: 2016_10_26-PM-01_05_13
Last ObjectModification: 2016_07_12-AM-09_26_41

Theory : cubical!type!theory


Home Index