Nuprl Lemma : case-term-wf4

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}].
[v:{Gamma, psi ⊢ _:B}].
  ((u ∨ v) ∈ {Gamma, (phi ∨ psi) ⊢ _:(if phi then else B)}) supposing 
     (Gamma, (phi ∧ psi) ⊢ u=v:A and 
     Gamma, (phi ∧ psi) ⊢ B)


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) case-type: (if phi then else B) same-cubical-term: X ⊢ u=v:A same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B squash: T prop: true: True same-cubical-type: Gamma ⊢ B guard: {T} implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} same-cubical-term: X ⊢ u=v:A and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  same-cubical-type_wf context-subset_wf face-and_wf subset-cubical-type face-term-implies-subset face-term-and-implies1 face-term-and-implies2 istype-cubical-term cubical-type_wf face-type_wf cubical_set_wf case-term_wf2 case-type_wf cubical-term_wf squash_wf true_wf case-type-same2 cubical-type-cumulativity2 cubical_set_cumulativity-i-j equal_functionality_wrt_subtype_rel2 case-type-same1 subset-cubical-term context-subset-is-subset context-subset-subtype-and context-iterated-subset sub_cubical_set_wf face-and-com iff_weakening_equal sub_cubical_set_transitivity context-subset-swap sub_cubical_set_functionality2 context-iterated-subset2 face-or_wf face-term-implies-or1 subset-cubical-term2 cubical-term-eqcd same-cubical-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality applyEquality because_Cache independent_isectElimination instantiate lambdaEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed cumulativity independent_functionElimination dependent_set_memberEquality_alt productElimination inhabitedIsType independent_pairFormation equalityIstype universeEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].  \mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:B\}].
    ((u  \mvee{}  v)  \mmember{}  \{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_:(if  phi  then  A  else  B)\})  supposing 
          (Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  u=v:A  and 
          Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B)



Date html generated: 2020_05_20-PM-03_12_47
Last ObjectModification: 2020_04_19-PM-01_55_45

Theory : cubical!type!theory


Home Index