Nuprl Lemma : case-term-wf4
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}].
∀[v:{Gamma, psi ⊢ _:B}].
  ((u ∨ v) ∈ {Gamma, (phi ∨ psi) ⊢ _:(if phi then A else B)}) supposing 
     (Gamma, (phi ∧ psi) ⊢ u=v:A and 
     Gamma, (phi ∧ psi) ⊢ A = B)
Proof
Definitions occuring in Statement : 
case-term: (u ∨ v)
, 
case-type: (if phi then A else B)
, 
same-cubical-term: X ⊢ u=v:A
, 
same-cubical-type: Gamma ⊢ A = B
, 
context-subset: Gamma, phi
, 
face-or: (a ∨ b)
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
same-cubical-type: Gamma ⊢ A = B
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
same-cubical-term: X ⊢ u=v:A
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
same-cubical-type_wf, 
context-subset_wf, 
face-and_wf, 
subset-cubical-type, 
face-term-implies-subset, 
face-term-and-implies1, 
face-term-and-implies2, 
istype-cubical-term, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
case-term_wf2, 
case-type_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
case-type-same2, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
equal_functionality_wrt_subtype_rel2, 
case-type-same1, 
subset-cubical-term, 
context-subset-is-subset, 
context-subset-subtype-and, 
context-iterated-subset, 
sub_cubical_set_wf, 
face-and-com, 
iff_weakening_equal, 
sub_cubical_set_transitivity, 
context-subset-swap, 
sub_cubical_set_functionality2, 
context-iterated-subset2, 
face-or_wf, 
face-term-implies-or1, 
subset-cubical-term2, 
cubical-term-eqcd, 
same-cubical-term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
lambdaEquality_alt, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
inhabitedIsType, 
independent_pairFormation, 
equalityIstype, 
universeEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].  \mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:B\}].
    ((u  \mvee{}  v)  \mmember{}  \{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_:(if  phi  then  A  else  B)\})  supposing 
          (Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  u=v:A  and 
          Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B)
Date html generated:
2020_05_20-PM-03_12_47
Last ObjectModification:
2020_04_19-PM-01_55_45
Theory : cubical!type!theory
Home
Index