Nuprl Lemma : face-and-com

[Gamma:j⊢]. ∀[r,s:{Gamma ⊢ _:𝔽}].  ((r ∧ s) (s ∧ r) ∈ {Gamma ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-and: (a ∧ b) subtype_rel: A ⊆B and: P ∧ Q cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice_properties face_lattice_wf bdd-distributive-lattice-subtype-lattice cubical-term-at_wf face-type_wf subtype_rel_self lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf I_cube_wf fset_wf nat_wf cubical-term-equal face-and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality productElimination instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache universeIsType independent_isectElimination equalityTransitivity equalitySymmetry isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[r,s:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    ((r  \mwedge{}  s)  =  (s  \mwedge{}  r))



Date html generated: 2020_05_20-PM-02_40_59
Last ObjectModification: 2020_04_04-PM-04_49_29

Theory : cubical!type!theory


Home Index