Nuprl Lemma : csm+-id

[G:j⊢]. ∀[A:{G ⊢ _}].  (1(G)+ 1(G.A) ∈ G.A ij⟶ G.A)


Proof




Definitions occuring in Statement :  csm+: tau+ cube-context-adjoin: X.A cubical-type: {X ⊢ _} csm-id: 1(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] cube-context-adjoin: X.A cubical-type: {X ⊢ _} csm-id: 1(X) csm+: tau+ cc-snd: q cc-fst: p csm-ap-type: (AF)s csm-comp: F csm-adjoin: (s;u) pi2: snd(t) compose: g csm-ap: (s)x pi1: fst(t)
Lemmas referenced :  cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm+_wf csm-id_wf subtype_rel-equal cube_set_map_wf csm-ap-type_wf equal_wf squash_wf true_wf istype-universe cubical_set_wf csm-ap-id-type subtype_rel_self iff_weakening_equal I_cube_pair_redex_lemma cubical_type_at_pair_lemma I_cube_wf fset_wf nat_wf csm-equal2 cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation_alt dependent_functionElimination Error :memTop,  setElimination rename dependent_pairEquality_alt isect_memberFormation_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].    (1(G)+  =  1(G.A))



Date html generated: 2020_05_20-PM-01_58_21
Last ObjectModification: 2020_04_21-PM-00_16_28

Theory : cubical!type!theory


Home Index