Nuprl Lemma : csm+-id
∀[G:j⊢]. ∀[A:{G ⊢ _}].  (1(G)+ = 1(G.A) ∈ G.A ij⟶ G.A)
Proof
Definitions occuring in Statement : 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
pi2: snd(t)
, 
compose: f o g
, 
csm-ap: (s)x
, 
pi1: fst(t)
Lemmas referenced : 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm+_wf, 
csm-id_wf, 
subtype_rel-equal, 
cube_set_map_wf, 
csm-ap-type_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical_set_wf, 
csm-ap-id-type, 
subtype_rel_self, 
iff_weakening_equal, 
I_cube_pair_redex_lemma, 
cubical_type_at_pair_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
csm-equal2, 
cubical-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
dependent_pairEquality_alt, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].    (1(G)+  =  1(G.A))
Date html generated:
2020_05_20-PM-01_58_21
Last ObjectModification:
2020_04_21-PM-00_16_28
Theory : cubical!type!theory
Home
Index