Nuprl Lemma : dM-fl-all_wf

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[z:Point(dM(I))].  (dM-fl-all(I;phi;z) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-fl-all: dM-fl-all(I;phi;z) face_lattice: face_lattice(I) dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-fl-all: dM-fl-all(I;phi;z) names: names(I) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra guard: {T}
Lemmas referenced :  nat_wf fset_wf DeMorgan-algebra-axioms_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype DeMorgan-algebra-structure_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set free-dist-lattice_wf dM_wf lattice-point_wf subtype_rel-equal f-subset-add-name add-name_wf face_lattice-point-subtype fl_all_wf face_lattice-deq_wf face_lattice_wf names-deq_wf union-deq_wf names_wf lattice-extend_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality because_Cache hypothesis lambdaEquality unionElimination setElimination rename hypothesisEquality applyEquality independent_isectElimination dependent_functionElimination instantiate productEquality cumulativity universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[z:Point(dM(I))].
    (dM-fl-all(I;phi;z)  \mmember{}  Point(face\_lattice(I)))



Date html generated: 2016_05_18-PM-00_19_16
Last ObjectModification: 2016_03_25-PM-03_27_15

Theory : cubical!type!theory


Home Index