Nuprl Lemma : discrete_comp_wf

[G:j⊢]. ∀[T:Type].  (discrete_comp(G;T) ∈ G ⊢ Compositon(discr(T)))


Proof




Definitions occuring in Statement :  discrete_comp: discrete_comp(G;T) composition-structure: Gamma ⊢ Compositon(A) discrete-cubical-type: discr(T) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) squash: T prop: composition-function: composition-function{j:l,i:l}(Gamma;A) discrete-comp: discrete-comp(G;T) comp-op-to-comp-fun: cop-to-cfun(cA) discrete_comp: discrete_comp(G;T) csm-composition: (comp)sigma composition-term: comp cA [phi ⊢→ u] a0 subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-term-at: u(a) cubical-term: {X ⊢ _:A} all: x:A. B[x] implies:  Q csm-ap-type: (AF)s interval-1: 1(𝕀) discrete-cubical-type: discr(T)
Lemmas referenced :  comp-op-to-comp-fun_wf2 discrete-cubical-type_wf discrete-comp_wf istype-universe cubical_set_wf uniform-comp-function_wf constrained-cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf context-subset_wf csm-context-subset-subtype3 cubical-term-eqcd face-type_wf cube_set_map_wf csm-discrete-cubical-type I_cube_wf fset_wf nat_wf cubical-term-equal istype-cubical-term csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 csm-id-adjoin_wf-interval-1 subset-cubical-term2 sub_cubical_set_self subset-cubical-term context-subset-is-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate universeEquality universeIsType applyLambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt functionExtensionality applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination Error :memTop,  inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:Type].    (discrete\_comp(G;T)  \mmember{}  G  \mvdash{}  Compositon(discr(T)))



Date html generated: 2020_05_20-PM-05_21_39
Last ObjectModification: 2020_04_18-AM-11_56_47

Theory : cubical!type!theory


Home Index