Nuprl Lemma : discrete_comp_wf
∀[G:j⊢]. ∀[T:Type].  (discrete_comp(G;T) ∈ G ⊢ Compositon(discr(T)))
Proof
Definitions occuring in Statement : 
discrete_comp: discrete_comp(G;T)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
discrete-cubical-type: discr(T)
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
squash: ↓T
, 
prop: ℙ
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
discrete-comp: discrete-comp(G;T)
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
discrete_comp: discrete_comp(G;T)
, 
csm-composition: (comp)sigma
, 
composition-term: comp cA [phi ⊢→ u] a0
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
discrete-cubical-type: discr(T)
Lemmas referenced : 
comp-op-to-comp-fun_wf2, 
discrete-cubical-type_wf, 
discrete-comp_wf, 
istype-universe, 
cubical_set_wf, 
uniform-comp-function_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
csm-context-subset-subtype3, 
cubical-term-eqcd, 
face-type_wf, 
cube_set_map_wf, 
csm-discrete-cubical-type, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
istype-cubical-term, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
csm-id-adjoin_wf-interval-1, 
subset-cubical-term2, 
sub_cubical_set_self, 
subset-cubical-term, 
context-subset-is-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
universeIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:Type].    (discrete\_comp(G;T)  \mmember{}  G  \mvdash{}  Compositon(discr(T)))
Date html generated:
2020_05_20-PM-05_21_39
Last ObjectModification:
2020_04_18-AM-11_56_47
Theory : cubical!type!theory
Home
Index