Nuprl Lemma : face-term-0-and-1

G:j⊢G.𝕀 ⊢ (((q=0) ∧ (q=1))  0(𝔽))


Proof




Definitions occuring in Statement :  face-term-implies: Gamma ⊢ (phi  psi) face-zero: (i=0) face-one: (i=1) face-and: (a ∧ b) face-0: 0(𝔽) interval-type: 𝕀 cc-snd: q cube-context-adjoin: X.A cubical_set: CubicalSet all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] face-term-implies: Gamma ⊢ (phi  psi) implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) iff: ⇐⇒ Q interval-presheaf: 𝕀 not: ¬A false: False cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt
Lemmas referenced :  lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf I_cube_wf cube-context-adjoin_wf interval-type_wf fset_wf nat_wf cubical_set_wf face-and-eq-1 face-zero_wf cc-snd_wf face-one_wf face-zero-eq-1 face-one-eq-1 interval-type-at I_cube_pair_redex_lemma dM-0-not-1 face-and_wf cubical-term-at_wf face-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis equalityIstype universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination productElimination independent_functionElimination Error :memTop,  voidElimination hyp_replacement

Latex:
\mforall{}G:j\mvdash{}.  G.\mBbbI{}  \mvdash{}  (((q=0)  \mwedge{}  (q=1))  {}\mRightarrow{}  0(\mBbbF{}))



Date html generated: 2020_05_20-PM-07_27_41
Last ObjectModification: 2020_04_25-PM-10_15_10

Theory : cubical!type!theory


Home Index