Nuprl Lemma : paths-are-refl-iff2

[X:j⊢]. ∀[A:{X ⊢ _}].
  uiff(∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}.  (p refl(p 0(𝕀)) ∈ {Z ⊢ _:Path((A)s)});∀Z:j⊢. ∀s:Z j⟶ X.
                                                                                            ∀p:{Z.𝕀 ⊢ _:((A)s)p}.
                                                                                              ∀[x,y:{Z ⊢ _:𝕀}].
                                                                                                ((p)[x]
                                                                                                (p)[y]
                                                                                                ∈ {Z ⊢ _:(A)s}))


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubicalpath-app: pth r pathtype: Path(A) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-id: 1(X) csm-ap: (s)x prop: squash: T true: True guard: {T}
Lemmas referenced :  paths-are-refl-iff cube_set_map_wf cubical-term_wf pathtype_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-refl_wf cubicalpath-app_wf interval-0_wf path-type-subtype cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-ap-term_wf csm-id-adjoin_wf subset-cubical-term2 sub_cubical_set_self csm_id_adjoin_fst_type_lemma cubical-type_wf cubical_set_wf term-to-path_wf csm-id-adjoin_wf-interval-1 equal_wf squash_wf true_wf istype-universe term-to-path-beta path-eta_wf path-eta-id-adjoin
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_pairFormation independent_isectElimination lambdaFormation_alt dependent_functionElimination universeIsType because_Cache sqequalRule lambdaEquality_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies functionIsType instantiate applyEquality equalityIstype isectIsType Error :memTop,  setElimination rename hyp_replacement equalitySymmetry imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].
    uiff(\mforall{}Z:j\mvdash{}.  \mforall{}s:Z  j{}\mrightarrow{}  X.  \mforall{}p:\{Z  \mvdash{}  \_:Path((A)s)\}.    (p  =  refl(p  @  0(\mBbbI{})));\mforall{}Z:j\mvdash{}.  \mforall{}s:Z  j{}\mrightarrow{}  X.
                                                                                                                                              \mforall{}p:\{Z.\mBbbI{}  \mvdash{}  \_:((A)s)p\}.
                                                                                                                                                  \mforall{}[x,y:\{Z  \mvdash{}  \_:\mBbbI{}\}].
                                                                                                                                                      ((p)[x]  =  (p)[y]))



Date html generated: 2020_05_20-PM-03_44_05
Last ObjectModification: 2020_04_07-PM-06_03_56

Theory : cubical!type!theory


Home Index