Nuprl Lemma : s-comp-nc-0-alt

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ].  (s ⋅ (i0) s ∈ I+j ⟶ I)


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  s-comp-nc-0' equal_wf nh-comp_wf add-name-com add-name_wf iff_weakening_equal nc-s_wf f-subset-add-name1 f-subset-add-name set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis hyp_replacement equalitySymmetry sqequalRule applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity independent_isectElimination productElimination independent_functionElimination dependent_functionElimination setElimination rename intEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].    (s  \mcdot{}  (i0)  =  s)



Date html generated: 2017_10_05-AM-01_02_56
Last ObjectModification: 2017_07_28-AM-09_26_29

Theory : cubical!type!theory


Home Index