Nuprl Lemma : s-comp-nc-0-alt
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ].  (s ⋅ (i0) = s ∈ I+j ⟶ I)
Proof
Definitions occuring in Statement : 
nc-0: (i0)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
s-comp-nc-0', 
equal_wf, 
nh-comp_wf, 
add-name-com, 
add-name_wf, 
iff_weakening_equal, 
nc-s_wf, 
f-subset-add-name1, 
f-subset-add-name, 
set_wf, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
intEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].    (s  \mcdot{}  (i0)  =  s)
Date html generated:
2017_10_05-AM-01_02_56
Last ObjectModification:
2017_07_28-AM-09_26_29
Theory : cubical!type!theory
Home
Index