Nuprl Lemma : s-comp-nc-0'

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[j:{j:ℕ| ¬j ∈ I} ].  (s ⋅ (j0) s ∈ I+i ⟶ I)


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nc-s: s nc-0: (i0) nh-comp: g ⋅ f names-hom: I ⟶ J dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] all: x:A. B[x] true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q nat: names: names(I) uiff: uiff(P;Q) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf dM_wf add-name_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc nc-0_wf dM_inc_wf names-subtype f-subset-add-name iff_weakening_equal names_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf fset-member-add-name eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity because_Cache setElimination rename dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination intEquality isect_memberEquality axiomEquality dependent_set_memberEquality inrFormation lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  ].    (s  \mcdot{}  (j0)  =  s)



Date html generated: 2017_10_05-AM-01_02_47
Last ObjectModification: 2017_07_28-AM-09_26_25

Theory : cubical!type!theory


Home Index