Nuprl Lemma : eu-conga-to-cong3

E:EuclideanPlane. ∀a,b,c,d,e,f:Point.
  (abc def  (∃a',c',d',f':Point. (out(b a'a) ∧ out(b cc') ∧ out(e d'd) ∧ out(e ff') ∧ Cong3(a'bc',d'ef'))))


Proof




Definitions occuring in Statement :  eu-out: out(p ab) eu-cong-tri: Cong3(abc,a'b'c') eu-cong-angle: abc xyz euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-cong-angle: abc xyz and: P ∧ Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B eu-out: out(p ab) not: ¬A uimplies: supposing a false: False eu-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q)
Lemmas referenced :  eu-cong-angle_wf eu-point_wf euclidean-plane_wf eu-out_wf eu-cong-tri_wf exists_wf eu-between-eq_wf eu-between-eq-same equal_wf not_wf eu-congruent_wf false_wf eu-congruence-identity eu-congruent-iff-length eu-length-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination dependent_pairFormation productEquality sqequalRule lambdaEquality because_Cache equalitySymmetry hyp_replacement Error :applyLambdaEquality,  independent_isectElimination independent_functionElimination voidElimination independent_pairFormation dependent_functionElimination equalityTransitivity equalityEquality universeEquality

Latex:
\mforall{}E:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.
    (abc  =  def
    {}\mRightarrow{}  (\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  cc')  \mwedge{}  out(e  d'd)  \mwedge{}  out(e  ff')  \mwedge{}  Cong3(a'bc',d'ef'))))



Date html generated: 2016_10_26-AM-07_44_48
Last ObjectModification: 2016_07_12-AM-08_13_00

Theory : euclidean!geometry


Home Index