Nuprl Lemma : eu-conga-to-cong3
∀E:EuclideanPlane. ∀a,b,c,d,e,f:Point.
  (abc = def 
⇒ (∃a',c',d',f':Point. (out(b a'a) ∧ out(b cc') ∧ out(e d'd) ∧ out(e ff') ∧ Cong3(a'bc',d'ef'))))
Proof
Definitions occuring in Statement : 
eu-out: out(p ab)
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
eu-cong-angle: abc = xyz
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
eu-cong-angle: abc = xyz
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
eu-out: out(p ab)
, 
not: ¬A
, 
uimplies: b supposing a
, 
false: False
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
uiff: uiff(P;Q)
Lemmas referenced : 
eu-cong-angle_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-out_wf, 
eu-cong-tri_wf, 
exists_wf, 
eu-between-eq_wf, 
eu-between-eq-same, 
equal_wf, 
not_wf, 
eu-congruent_wf, 
false_wf, 
eu-congruence-identity, 
eu-congruent-iff-length, 
eu-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
productEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalityEquality, 
universeEquality
Latex:
\mforall{}E:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.
    (abc  =  def
    {}\mRightarrow{}  (\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  cc')  \mwedge{}  out(e  d'd)  \mwedge{}  out(e  ff')  \mwedge{}  Cong3(a'bc',d'ef'))))
Date html generated:
2016_10_26-AM-07_44_48
Last ObjectModification:
2016_07_12-AM-08_13_00
Theory : euclidean!geometry
Home
Index