Nuprl Lemma : sq_stable_euclidean-axioms

e:EuclideanStructure. SqStable(euclidean-axioms(e))


Proof




Definitions occuring in Statement :  euclidean-axioms: euclidean-axioms(e) euclidean-structure: EuclideanStructure sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] euclidean-axioms: euclidean-axioms(e) let: let uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: and: P ∧ Q uimplies: supposing a cand: c∧ B implies:  Q subtype_rel: A ⊆B top: Top sq_stable: SqStable(P) not: ¬A false: False
Lemmas referenced :  sq_stable__and uall_wf eu-point_wf eu-congruent_wf isect_wf equal_wf not_wf eu-between-eq_wf eu-extend_wf eu-between_wf eu-colinear_wf eu-inner-pasch_wf eu-middle_wf and_wf eu-line-circle_wf pi1_wf_top subtype_rel_product top_wf pi2_wf sq_stable__uall sq_stable__eu-congruent sq_stable__equal squash_wf sq_stable__eu-between-eq set_wf sq_stable__not sq_stable__eu-between sq_stable__colinear euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality isect_memberEquality productEquality because_Cache setEquality setElimination rename dependent_set_memberEquality productElimination independent_pairFormation applyEquality independent_isectElimination voidElimination voidEquality equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isectEquality isect_memberFormation introduction axiomEquality

Latex:
\mforall{}e:EuclideanStructure.  SqStable(euclidean-axioms(e))



Date html generated: 2016_05_18-AM-06_33_32
Last ObjectModification: 2015_12_28-AM-09_29_03

Theory : euclidean!geometry


Home Index