Nuprl Lemma : Euclid-prop13

g:EuclideanPlane. ∀a,b,c,d:Point.  (c-b-d  cd  abc abd ≅ cbd)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: and: P ∧ Q cand: c∧ B basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False select: L[n] cons: [a b] subtract: m hp-angle-sum: abc xyz ≅ def
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-point_wf colinear-lsep-cycle lsep-all-sym geo-strict-between-sep3 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-implies-sep geo-cong-angle-symm geo-strict-between-sep2 geo-sep-sym geo-between-trivial2 geo-out_weakening geo-eq_weakening geo-cong-angle_wf geo-between_wf geo-out_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination independent_functionElimination productElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (c-b-d  {}\mRightarrow{}  a  \#  cd  {}\mRightarrow{}  abc  +  abd  \mcong{}  cbd)



Date html generated: 2019_10_16-PM-02_10_18
Last ObjectModification: 2019_06_05-AM-09_37_37

Theory : euclidean!plane!geometry


Home Index