Nuprl Lemma : between-implies-straightangle

e:EuclideanPlane. ∀a,b,c,a',b',c':Point.  (a-b-c  (abc ≅a a'b'c' ∧ a' ≠ b' ∧ b' ≠ c' ⇐⇒ a'-b'-c'))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a rev_implies:  Q geo-cong-angle: abc ≅a xyz exists: x:A. B[x] geo-strict-between: a-b-c basic-geometry-: BasicGeometry- cand: c∧ B uiff: uiff(P;Q) squash: T true: True euclidean-plane: EuclideanPlane
Lemmas referenced :  geo-cong-angle_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between-sep2 geo-strict-between-sep3 geo-strict-between_wf geo-point_wf geo-between-symmetry geo-strict-between-implies-between geo-between-outer-trans geo-between-exchange4 geo-sep-sym geo-between-sep geo-congruent-preserves-between geo-congruent-iff-length geo-length-flip geo-between-inner-trans geo-between-exchange3 cong-angle-between-exists-iff geo-proper-extend-exists geo-between_wf geo-congruent_wf geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm geo-length_wf geo-mk-seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule productIsType universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination because_Cache dependent_functionElimination independent_functionElimination inhabitedIsType equalityTransitivity equalitySymmetry rename dependent_pairFormation_alt lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed setElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',b',c':Point.
    (a-b-c  {}\mRightarrow{}  (abc  \mcong{}\msuba{}  a'b'c'  \mwedge{}  a'  \mneq{}  b'  \mwedge{}  b'  \mneq{}  c'  \mLeftarrow{}{}\mRightarrow{}  a'-b'-c'))



Date html generated: 2019_10_16-PM-01_56_19
Last ObjectModification: 2018_11_07-PM-01_05_02

Theory : euclidean!plane!geometry


Home Index