Nuprl Lemma : cong-angle-between-exists-iff

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  ((((b ≠ a ∧ b ≠ c) ∧ y ≠ x) ∧ y ≠ z)
   (abc ≅a xyz
     ⇐⇒ ∃a',c',x',z':Point
          ((((b_a_a' ∧ b_c_c') ∧ y_x_x') ∧ y_z_z') ∧ (((ba ≅ xx' ∧ aa' ≅ yx) ∧ bc ≅ zz') ∧ cc' ≅ yz) ∧ a'c' ≅ x'z')))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-cong-angle: abc ≅a xyz subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs or: P ∨ Q uiff: uiff(P;Q) basic-geometry-: BasicGeometry- euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry cand: c∧ B
Lemmas referenced :  geo-cong-angle_wf geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent_wf geo-sep_wf geo-point_wf geo-proper-extend-exists geo-length-flip geo-between-out out-congruent geo-add-length-comm geo-length-type_wf true_wf squash_wf geo-add-length_wf geo-add-length-between less_than_wf le_wf istype-false length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma istype-void list_ind_cons_lemma geo-strict-between-implies-colinear geo-between-implies-colinear geo-colinear-is-colinear-set l_member_wf cons_member nil_wf cons_wf oriented-plane_wf euclidean-plane-subtype-oriented oriented-colinear-append geo-between-sep geo-colinear-five-segment geo-congruent-iff-length basic-geometry-_wf subtype_rel_self geo-strict-between-implies-between geo-between-symmetry geo-sep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule productIsType inhabitedIsType because_Cache applyEquality instantiate independent_isectElimination rename independent_functionElimination dependent_functionElimination equalityTransitivity imageElimination lambdaEquality_alt baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality_alt voidElimination isect_memberEquality_alt equalityIsType1 inrFormation_alt inlFormation_alt equalitySymmetry dependent_pairFormation_alt

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((((b  \mneq{}  a  \mwedge{}  b  \mneq{}  c)  \mwedge{}  y  \mneq{}  x)  \mwedge{}  y  \mneq{}  z)
    {}\mRightarrow{}  (abc  \mcong{}\msuba{}  xyz
          \mLeftarrow{}{}\mRightarrow{}  \mexists{}a',c',x',z':Point
                    ((((b\_a\_a'  \mwedge{}  b\_c\_c')  \mwedge{}  y\_x\_x')  \mwedge{}  y\_z\_z')
                    \mwedge{}  (((ba  \mcong{}  xx'  \mwedge{}  aa'  \mcong{}  yx)  \mwedge{}  bc  \mcong{}  zz')  \mwedge{}  cc'  \mcong{}  yz)
                    \mwedge{}  a'c'  \mcong{}  x'z')))



Date html generated: 2019_10_16-PM-01_27_00
Last ObjectModification: 2018_12_11-PM-11_08_45

Theory : euclidean!plane!geometry


Home Index