Nuprl Lemma : cong-angle-between-exists-iff
∀e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  ((((b ≠ a ∧ b ≠ c) ∧ y ≠ x) ∧ y ≠ z)
  
⇒ (abc ≅a xyz
     
⇐⇒ ∃a',c',x',z':Point
          ((((b_a_a' ∧ b_c_c') ∧ y_x_x') ∧ y_z_z') ∧ (((ba ≅ xx' ∧ aa' ≅ yx) ∧ bc ≅ zz') ∧ cc' ≅ yz) ∧ a'c' ≅ x'z')))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-cong-angle: abc ≅a xyz
, 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
l_all: (∀x∈L.P[x])
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
append: as @ bs
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry: BasicGeometry
, 
cand: A c∧ B
Lemmas referenced : 
geo-cong-angle_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent_wf, 
geo-sep_wf, 
geo-point_wf, 
geo-proper-extend-exists, 
geo-length-flip, 
geo-between-out, 
out-congruent, 
geo-add-length-comm, 
geo-length-type_wf, 
true_wf, 
squash_wf, 
geo-add-length_wf, 
geo-add-length-between, 
less_than_wf, 
le_wf, 
istype-false, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
geo-strict-between-implies-colinear, 
geo-between-implies-colinear, 
geo-colinear-is-colinear-set, 
l_member_wf, 
cons_member, 
nil_wf, 
cons_wf, 
oriented-plane_wf, 
euclidean-plane-subtype-oriented, 
oriented-colinear-append, 
geo-between-sep, 
geo-colinear-five-segment, 
geo-congruent-iff-length, 
basic-geometry-_wf, 
subtype_rel_self, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-sep-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
instantiate, 
independent_isectElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
equalityTransitivity, 
imageElimination, 
lambdaEquality_alt, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
equalityIsType1, 
inrFormation_alt, 
inlFormation_alt, 
equalitySymmetry, 
dependent_pairFormation_alt
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((((b  \mneq{}  a  \mwedge{}  b  \mneq{}  c)  \mwedge{}  y  \mneq{}  x)  \mwedge{}  y  \mneq{}  z)
    {}\mRightarrow{}  (abc  \mcong{}\msuba{}  xyz
          \mLeftarrow{}{}\mRightarrow{}  \mexists{}a',c',x',z':Point
                    ((((b\_a\_a'  \mwedge{}  b\_c\_c')  \mwedge{}  y\_x\_x')  \mwedge{}  y\_z\_z')
                    \mwedge{}  (((ba  \mcong{}  xx'  \mwedge{}  aa'  \mcong{}  yx)  \mwedge{}  bc  \mcong{}  zz')  \mwedge{}  cc'  \mcong{}  yz)
                    \mwedge{}  a'c'  \mcong{}  x'z')))
Date html generated:
2019_10_16-PM-01_27_00
Last ObjectModification:
2018_12_11-PM-11_08_45
Theory : euclidean!plane!geometry
Home
Index