Nuprl Lemma : geo-Aparallel-trans-lines
∀e:EuclideanParPlane. ∀l,m,n:Line.  (l || m 
⇒ m || n 
⇒ l || n)
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-Aparallel: l || m
, 
geo-line: Line
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-Aparallel: l || m
, 
not: ¬A
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geoline: LINE
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
false: False
Lemmas referenced : 
geo-intersect-iff2, 
geo-playfair-axiom, 
geo-Aparallel_sym, 
geo-intersect_wf, 
geo-Aparallel_wf, 
geoline-subtype1, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-strict-between-incident, 
quotient-member-eq, 
geo-line-eq_wf, 
geo-line-eq-equiv, 
geo-intersect-irreflexive, 
and_wf, 
equal_wf, 
geoline_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
independent_pairFormation, 
levelHypothesis, 
isectElimination, 
setElimination, 
rename, 
applyEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
voidElimination
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}l,m,n:Line.    (l  ||  m  {}\mRightarrow{}  m  ||  n  {}\mRightarrow{}  l  ||  n)
Date html generated:
2018_05_22-PM-01_10_43
Last ObjectModification:
2018_05_11-PM-11_14_10
Theory : euclidean!plane!geometry
Home
Index