Nuprl Lemma : geo-Aparallel-trans-lines

e:EuclideanParPlane. ∀l,m,n:Line.  (l ||  ||  || n)


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-line: Line all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-Aparallel: || m not: ¬A member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] cand: c∧ B prop: uall: [x:A]. B[x] euclidean-parallel-plane: EuclideanParPlane subtype_rel: A ⊆B guard: {T} uimplies: supposing a geoline: LINE so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] false: False
Lemmas referenced :  geo-intersect-iff2 geo-playfair-axiom geo-Aparallel_sym geo-intersect_wf geo-Aparallel_wf geoline-subtype1 geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between-incident quotient-member-eq geo-line-eq_wf geo-line-eq-equiv geo-intersect-irreflexive and_wf equal_wf geoline_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis addLevel introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache productElimination independent_functionElimination hypothesisEquality independent_pairFormation levelHypothesis isectElimination setElimination rename applyEquality sqequalRule instantiate independent_isectElimination lambdaEquality equalityTransitivity equalitySymmetry hyp_replacement dependent_set_memberEquality applyLambdaEquality voidElimination

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}l,m,n:Line.    (l  ||  m  {}\mRightarrow{}  m  ||  n  {}\mRightarrow{}  l  ||  n)



Date html generated: 2018_05_22-PM-01_10_43
Last ObjectModification: 2018_05_11-PM-11_14_10

Theory : euclidean!plane!geometry


Home Index