Nuprl Lemma : geo-perp-in-not-eq
∀e:BasicGeometry. ∀x:Point.  ∀[a,b,c,d:Point].  (ab  ⊥x cd 
⇒ (¬a ≡ b))
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd
, 
basic-geometry: BasicGeometry
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
geo-perp-in: ab  ⊥x cd
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
euclidean-plane: EuclideanPlane
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
, 
geo-eq: a ≡ b
Lemmas referenced : 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-perp-in_wf, 
geo-point_wf, 
right-angle-legs-same, 
geo-colinear_wf, 
geo-colinear-same, 
geo-colinear_functionality, 
geo-eq_weakening, 
geo-eq_inversion, 
geo-sep-O-X, 
geo-O_wf, 
geo-X_wf, 
geo-eq_transitivity, 
subtype_rel_self, 
basic-geometry-_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
allFunctionality, 
promote_hyp, 
setElimination, 
rename, 
independent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.    \mforall{}[a,b,c,d:Point].    (ab    \mbot{}x  cd  {}\mRightarrow{}  (\mneg{}a  \mequiv{}  b))
Date html generated:
2018_05_22-PM-00_04_45
Last ObjectModification:
2018_04_20-AM-10_20_57
Theory : euclidean!plane!geometry
Home
Index