Nuprl Lemma : isosc-bisectors-between-ns

e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c ab  ac ≅ bc  (c_a_a' ∧ b'_b_c)  a=m=b  a'=m'=b'  aa' ≅ bb'  c_m_m')


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-midpoint: a=m=b geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a heyting-geometry: HeytingGeometry euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry stable: Stable{P} not: ¬A or: P ∨ Q false: False geo-eq: a ≡ b iff: ⇐⇒ Q geo-strict-between: a-b-c cand: c∧ B rev_implies:  Q
Lemmas referenced :  geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-midpoint_wf subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf geo-between_wf geo-triangle_wf geo-point_wf stable__geo-between false_wf or_wf geo-sep_wf not_wf minimal-double-negation-hyp-elim geo-congruent_functionality geo-eq_weakening geo-midpoint_functionality geo-between_functionality minimal-not-not-excluded-middle geo-strict-between-implies-between geo-between-symmetry geo-congruent-sep geo-congruent-symmetry geo-sep-sym geo-triangle-property isosc-bisectors-between geo-congruence-identity3 geo-eq_inversion geo-congruence-identity geo-triangle_functionality at-most-one-midpoint geo-between-trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule setEquality productEquality cumulativity because_Cache dependent_functionElimination setElimination rename functionEquality independent_functionElimination unionElimination voidElimination independent_pairFormation promote_hyp

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  ab  {}\mRightarrow{}  ac  \00D0  bc  {}\mRightarrow{}  (c\_a\_a'  \mwedge{}  b'\_b\_c)  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  a'=m'=b'  {}\mRightarrow{}  aa'  \00D0  bb'  {}\mRightarrow{}  c\_m\_m')



Date html generated: 2017_10_02-PM-07_06_43
Last ObjectModification: 2017_08_16-AM-11_13_24

Theory : euclidean!plane!geometry


Home Index