Nuprl Lemma : isosceles-mid-cong-angles

e:HeytingGeometry. ∀a,b,c,m:Point.  (c ab  a=m=b  ac ≅ bc  acm ≅a bcm)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-angle: abc ≅a xyz geo-midpoint: a=m=b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q cand: c∧ B member: t ∈ T heyting-geometry: HeytingGeometry guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a prop: uiff: uiff(P;Q) geo-midpoint: a=m=b exists: x:A. B[x] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-sep-sym geo-triangle-property geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-midpoint_wf geo-triangle_wf geo-point_wf geo-between-trivial geo-congruent-iff-length euclidean-plane-subtype-basic basic-geometry_wf geo-length-flip geo-congruent-refl geo-between_wf geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than midpoint-sep geo-triangle-colinear geo-triangle-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache independent_functionElimination hypothesis productElimination universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType equalityTransitivity equalitySymmetry productIsType dependent_pairFormation_alt isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation lambdaEquality_alt

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m:Point.    (c  \#  ab  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  ac  \mcong{}  bc  {}\mRightarrow{}  acm  \mcong{}\msuba{}  bcm)



Date html generated: 2019_10_16-PM-02_09_19
Last ObjectModification: 2018_12_14-AM-10_00_27

Theory : euclidean!plane!geometry


Home Index