Nuprl Lemma : isosceles-mid-cong-angles
∀e:HeytingGeometry. ∀a,b,c,m:Point.  (c # ab 
⇒ a=m=b 
⇒ ac ≅ bc 
⇒ acm ≅a bcm)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-cong-angle: abc ≅a xyz
, 
geo-midpoint: a=m=b
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-cong-angle: abc ≅a xyz
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
heyting-geometry: HeytingGeometry
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
geo-midpoint: a=m=b
, 
exists: ∃x:A. B[x]
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
geo-sep-sym, 
geo-triangle-property, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-midpoint_wf, 
geo-triangle_wf, 
geo-point_wf, 
geo-between-trivial, 
geo-congruent-iff-length, 
euclidean-plane-subtype-basic, 
basic-geometry_wf, 
geo-length-flip, 
geo-congruent-refl, 
geo-between_wf, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
midpoint-sep, 
geo-triangle-colinear, 
geo-triangle-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
productElimination, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
lambdaEquality_alt
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m:Point.    (c  \#  ab  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  ac  \mcong{}  bc  {}\mRightarrow{}  acm  \mcong{}\msuba{}  bcm)
Date html generated:
2019_10_16-PM-02_09_19
Last ObjectModification:
2018_12_14-AM-10_00_27
Theory : euclidean!plane!geometry
Home
Index